Dana E Vanderwall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7696668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-reporting data assets and their representation in the pharmaceutical industry. Drug Discovery Today, 2022, 27, 207-214.	3.2	1
2	Coming of age of Allotrope: Proceedings from the Fall 2020 Allotrope Connect. Drug Discovery Today, 2021, 26, 1922-1928.	3.2	12
3	Quantifying drug tissue biodistribution by integrating high content screening with deep-learning analysis. Scientific Reports, 2020, 10, 14408.	1.6	2
4	Molecular clinical safety intelligence: a system for bridging clinically focused safety knowledge to early-stage drug discovery – the GSK experience. Drug Discovery Today, 2011, 16, 646-653.	3.2	10
5	Disclosing ambiguous gene aliases by automatic literature profiling. BMC Genomics, 2010, 11, S3.	1.2	11
6	Thousands of chemical starting points for antimalarial lead identification. Nature, 2010, 465, 305-310.	13.7	870
7	Functional antagonism of IL-11̂± induced gene expression profiles define the cAMP/PKA pathway as a unique regulator of IL-11̂± signaling networks. Journal of Receptor and Signal Transduction Research, 2009, 29, 246-256.	1.3	1
8	Thienopyrimidine-based dual EGFR/ErbB-2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 817-820.	1.0	76
9	Multivariate classification analysis of metabolomic data for candidate biomarker discovery in type 2 diabetes mellitus. Metabolomics, 2008, 4, 337-346.	1.4	27
10	6-Ethynylthieno[3,2-d]- and 6-ethynylthieno[2,3-d]pyrimidin-4-anilines as tunable covalent modifiers of ErbB kinases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2773-2778.	3.3	92
11	Correlation betweenin VitroPeptide Binding Profiles and Cellular Activities for Estrogen Receptor-Modulating Compounds. Molecular Endocrinology, 2004, 18, 1064-1081.	3.7	60
12	Synthesis and SAR of Potent EGFR/erbB2 Dual Inhibitors. ChemInform, 2004, 35, no.	0.1	0
13	Synthesis and SAR of potent EGFR/erbB2 dual inhibitors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 111-114.	1.0	46
14	Crystal Structures of the Catalytic Domain of Phosphodiesterase 4B Complexed with AMP, 8-Br-AMP, and Rolipram. Journal of Molecular Biology, 2004, 337, 355-365.	2.0	113
15	Solution structure of the hydroperoxide of Co(III) phleomycin complexed with d(CCAGGCCTGG)2: evidence for binding by partial intercalation. Nucleic Acids Research, 2002, 30, 4881-4891.	6.5	18
16	Inhibitors of dihydrodipicolinate reductase, a key enzyme of the diaminopimelate pathway of Mycobacterium tuberculosis. BBA - Proteins and Proteomics, 2001, 1545, 67-77.	2.1	75
17	Atomic Structure of PDE4: Insights into Phosphodiesterase Mechanism and Specificity. Science, 2000, 288, 1822-1825.	6.0	342
18	Structure-activity relationships of biphenyl tetrazoles as metallo-β-lactamase inhibitors. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2741-2746.	1.0	52

DANA E VANDERWALL

#	Article	IF	CITATIONS
19	Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-β-lactamase. Chemistry and Biology, 1998, 5, 185-196.	6.2	225
20	NMR Studies of Co·Deglycobleomycin A2 Green and Its Complex with d(CCAGGCCTGG). Journal of the American Chemical Society, 1998, 120, 2239-2250.	6.6	45
21	Structural Characterization of Co·Bleomycin A2 Brown: Free and Bound to d(CCAGGCCTGG). Journal of the American Chemical Society, 1997, 119, 9603-9613.	6.6	49
22	A model of the structure of HOO-Co·bleomycin bound to d(CCAGTACTGG): recognition at the d(GpT) site and implications for double-stranded DNA cleavage. Chemistry and Biology, 1997, 4, 373-387.	6.2	71
23	Solution Structure of Co·Bleomycin A2 Green Complexed with d(CCAGGCCTGG). Journal of the American Chemical Society, 1996, 118, 1281-1294.	6.6	118
24	Studies of Co·Bleomycin A2 Green:  Its Detailed Structural Characterization by NMR and Molecular Modeling and Its Sequence-Specific Interaction with DNA Oligonucleotides. Journal of the American Chemical Society, 1996, 118, 1268-1280.	6.6	108
25	Bleomycins:  A Structural Model for Specificity, Binding, and Double Strand Cleavage. Accounts of Chemical Research, 1996, 29, 322-330.	7.6	218
26	Interaction of Co.cntdot.Bleomycin A2 (Green) with d(CCAGGCCTGG)2: Evidence for Intercalation Using 2D NMR. Journal of the American Chemical Society, 1994, 116, 10843-10844.	6.6	82
27	Degradation of DNA-RNA hybrids by bleomycin: evidence for DNA strand specificity and for possible structural modulation of chemical mechanism. Journal of the American Chemical Society, 1988, 110, 2008-2009.	6.6	27