
Sveva Bollini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7696271/publications.pdf Version: 2024-02-01

SVEVA ROLLINI

#	Article	lF	CITATIONS
1	De novo cardiomyocytes from within the activated adult heart after injury. Nature, 2011, 474, 640-644.	27.8	602
2	Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature, 2015, 522, 62-67.	27.8	387
3	Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut, 2014, 63, 300-309.	12.1	155
4	Resident cardiac progenitor cells: At the heart of regeneration. Journal of Molecular and Cellular Cardiology, 2011, 50, 296-303.	1.9	149
5	Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. Journal of Molecular and Cellular Cardiology, 2007, 42, 746-759.	1.9	144
6	Amniotic Fluid Stem Cells Are Cardioprotective Following Acute Myocardial Infarction. Stem Cells and Development, 2011, 20, 1985-1994.	2.1	104
7	First Characterization of Human Amniotic Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool Endowed with Regenerative Potential. Stem Cells Translational Medicine, 2017, 6, 1340-1355.	3.3	104
8	Re-Activated Adult Epicardial Progenitor Cells Are a Heterogeneous Population Molecularly Distinct from Their Embryonic Counterparts. Stem Cells and Development, 2014, 23, 1719-1730.	2.1	86
9	In Vitro and In Vivo Cardiomyogenic Differentiation of Amniotic Fluid Stem Cells. Stem Cell Reviews and Reports, 2011, 7, 364-380.	5.6	82
10	Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate. Biomedical Microdevices, 2009, 11, 389-400.	2.8	78
11	Neovascularization induced by porous collagen scaffold implanted on intact and cryoinjured rat hearts. Biomaterials, 2007, 28, 5449-5461.	11.4	74
12	Autologous Transplantation of Amniotic Fluid-Derived Mesenchymal Stem Cells into Sheep Fetuses. Cell Transplantation, 2011, 20, 1015-1031.	2.5	69
13	BRG1-SWI/SNF-dependent regulation of the Wt1 transcriptional landscape mediates epicardial activity during heart development and disease. Nature Communications, 2017, 8, 16034.	12.8	69
14	Thymosin β4-sulfoxide attenuates inflammatory cell infiltration and promotes cardiac wound healing. Nature Communications, 2013, 4, 2081.	12.8	66
15	Different Cardiovascular Potential of Adult- and Fetal-Type Mesenchymal Stem Cells in a Rat Model of Heart Cryoinjury. Cell Transplantation, 2008, 17, 679-694.	2.5	63
16	Testosterone Antagonizes Doxorubicinâ€Induced Senescence of Cardiomyocytes. Journal of the American Heart Association, 2016, 5, .	3.7	62
17	The Regenerative Role of the Fetal and Adult Stem Cell Secretome. Journal of Clinical Medicine, 2013, 2, 302-327.	2.4	59
18	Reactivating endogenous mechanisms of cardiac regeneration via paracrine boosting using the human amniotic fluid stem cell secretome. International Journal of Cardiology, 2019, 287, 87-95.	1.7	57

SVEVA BOLLINI

#	Article	IF	CITATIONS
19	The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity. Scientific Reports, 2016, 6, 29994.	3.3	52
20	Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications. Cells, 2018, 7, 48.	4.1	49
21	Myocardial regeneration: expanding the repertoire of thymosin β4 in the ischemic heart. Annals of the New York Academy of Sciences, 2012, 1269, 92-101.	3.8	35
22	Dynamic haematopoietic cell contribution to the developing and adult epicardium. Nature Communications, 2014, 5, 4054.	12.8	35
23	Human Bone Marrow-Derived CD133 ⁺ Cells Delivered to a Collagen Patch on Cryoinjured Rat Heart Promote Angiogenesis and Arteriogenesis. Cell Transplantation, 2010, 19, 1247-1260.	2.5	34
24	Mesenchymal Stromal Cells Can Be Derived From Bone Marrow CD133 ⁺ Cells: Implications for Therapy. Stem Cells and Development, 2009, 18, 497-510.	2.1	33
25	Triggering Endogenous Cardiac Repair and Regeneration via Extracellular Vesicle-Mediated Communication. Frontiers in Physiology, 2018, 9, 1497.	2.8	33
26	Fetal and perinatal stem cells in cardiac regeneration: Moving forward to the paracrine era. Placenta, 2017, 59, 96-106.	1.5	32
27	Thymosin β4: multiple functions in protection, repair and regeneration of the mammalian heart. Expert Opinion on Biological Therapy, 2015, 15, 163-174.	3.1	27
28	Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development. Pharmacological Research, 2021, 168, 105581.	7.1	26
29	Progress in cardiac research: from rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovascular Research, 2021, 117, 2161-2174.	3.8	23
30	Learning from Mother Nature: Innovative Tools to Boost Endogenous Repair of Critical or Difficult-to-Heal Large Tissue Defects. Frontiers in Bioengineering and Biotechnology, 2017, 5, 28.	4.1	22
31	Message in a Bottle: Upgrading Cardiac Repair into Rejuvenation. Cells, 2020, 9, 724.	4.1	18
32	The human amniotic fluid stem cell secretome triggers intracellular Ca ²⁺ oscillations, NFâ€ՔB nuclear translocation and tube formation in human endothelial colonyâ€forming cells. Journal of Cellular and Molecular Medicine, 2021, 25, 8074-8086.	3.6	18
33	Young at Heart: Combining Strategies to Rejuvenate Endogenous Mechanisms of Cardiac Repair. Frontiers in Bioengineering and Biotechnology, 2020, 8, 447.	4.1	17
34	Thymosin β4 Protein Therapy for Cardiac Repair. Current Pharmaceutical Design, 2012, 18, 799-806.	1.9	16
35	Cardiac Restoration Stemming From the Placenta Tree: Insights From Fetal and Perinatal Cell Biology. Frontiers in Physiology, 2018, 9, 385.	2.8	15
36	Supporting data on inÂvitro cardioprotective and proliferative paracrine effects by the human amniotic fluid stem cell secretome. Data in Brief, 2019, 25, 104324.	1.0	14

Sveva Bollini

#	Article	IF	CITATIONS
37	Comprehensive Profiling of Secretome Formulations from Fetal- and Perinatal Human Amniotic Fluid Stem Cells. International Journal of Molecular Sciences, 2021, 22, 3713.	4.1	14
38	Beyond cardiomyocyte loss: Role of Notch in cardiac aging. Journal of Cellular Physiology, 2018, 233, 5670-5683.	4.1	11
39	Small Extracellular Vesicles from Human Amniotic Fluid Samples as Promising Theranostics. International Journal of Molecular Sciences, 2022, 23, 590.	4.1	11
40	The Human Fetal and Adult Stem Cell Secretome Can Exert Cardioprotective Paracrine Effects against Cardiotoxicity and Oxidative Stress from Cancer Treatment. Cancers, 2021, 13, 3729.	3.7	10
41	To serve and protect: a new heart patrolling and recycling role for macrophages. Cardiovascular Research, 2021, 117, e17-e20.	3.8	3
42	ESC Congress 2020, the digital experience: a report from the ESC Scientists of Tomorrow. Cardiovascular Research, 2020, 116, e190-e192.	3.8	1
43	Old, but gold? Not the case for the immune system when promoting systemic ageing. Cardiovascular Research, 2022, 118, e14-e16.	3.8	1
44	Investigating the Paracrine Role of Perinatal Derivatives: Human Amniotic Fluid Stem Cell-Extracellular Vesicles Show Promising Transient Potential for Cardiomyocyte Renewal. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	1
45	The Amniotic Fluid Stem Cell Secretome. , 2018, , 21-37.		0
46	One step closer to finding the Fountain of Youth in our muscles: can we grow old while staying young at heart?. Cardiovascular Research, 2019, 115, e85-e87.	3.8	0
47	â€~Veni, Vidi, Vici': how to arm your troops in the battlefield of cardiac repair. Cardiovascular Research, 2020, 116, e1-e4.	3.8	0
48	Scientists on the Spot: Rejuvenating the heart with RNA. Cardiovascular Research, 2020, 116, e182-e183.	3.8	0
49	Scientists on the Spot: Repairing and restoring the heart. Cardiovascular Research, 2021, 117, e55-e56.	3.8	0
50	Amniotic Fluid Stem Cells for Cardiac Regeneration. , 2014, , 3-15.		0
51	Scientists on the Spot: Cardiovascular ageing and stroke. Cardiovascular Research, 2021, 117, e169-e170.	3.8	0