Ghulam Abbas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7695647/publications.pdf

Version: 2024-02-01

		236612	253896
53	2,148	25	43
papers	citations	h-index	g-index
53	53	53	2086
33	33	33	2000
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Salinity mitigates cadmium-induced phytotoxicity in quinoa (Chenopodium quinoa Willd.) by limiting the Cd uptake and improved responses to oxidative stress: implications for phytoremediation. Environmental Geochemistry and Health, 2023, 45, 171-185.	1.8	19
2	Assessment of cadmium and lead tolerance potential of quinoa (Chenopodium quinoa Willd) and its implications for phytoremediation and human health. Environmental Geochemistry and Health, 2022, 44, 1487-1500.	1.8	19
3	Salinity modulates lead (Pb) tolerance and phytoremediation potential of quinoa: a multivariate comparison of physiological and biochemical attributes. Environmental Geochemistry and Health, 2022, 44, 257-272.	1.8	18
4	Physiological and biochemical characterization of Kalongi (Nigella sativa) against arsenic stress: Implications for human health risk assessment. Environmental Pollution, 2022, 298, 118829.	3.7	4
5	Iron oxide nanoparticles doped biochar ameliorates trace elements induced phytotoxicity in tomato by modulation of physiological and biochemical responses: Implications for human health risk. Chemosphere, 2022, 289, 133203.	4.2	13
6	Nickel tolerance and phytoremediation potential of quinoa are modulated under salinity: multivariate comparison of physiological and biochemical attributes. Environmental Geochemistry and Health, 2022, 44, 1409-1424.	1.8	6
7	Potassium and Humic Acid Synergistically Increase Salt Tolerance and Nutrient Uptake in Contrasting Wheat Genotypes through Ionic Homeostasis and Activation of Antioxidant Enzymes. Plants, 2022, 11, 263.	1.6	18
8	Multivariate analysis of accumulation and critical risk analysis of potentially hazardous elements in forage crops. Environmental Monitoring and Assessment, 2022, 194, 139.	1.3	4
9	Differential Uptake and Translocation of Cadmium and Lead by Quinoa: A Multivariate Comparison of Physiological and Oxidative Stress Responses. Toxics, 2022, 10, 68.	1.6	18
10	Resistance to NaCl salinity is positively correlated with iron and zinc uptake potential of wheat genotypes. Crop and Pasture Science, 2022, 73, 546-555.	0.7	5
11	Potassium and Silicon Synergistically Increase Cadmium and Lead Tolerance and Phytostabilization by Quinoa through Modulation of Physiological and Biochemical Attributes. Toxics, 2022, 10, 169.	1.6	9
12	Biochar increases salt tolerance and grain yield of quinoa on saline-sodic soil: multivariate comparison of physiological and oxidative stress attributes. Journal of Soils and Sediments, 2022, 22, 1446-1459.	1.5	15
13	Soil sodicity is more detrimental than salinity for quinoa (<i>Chenopodium quinoa</i> Willd.): A multivariate comparison of physiological, biochemical and nutritional quality attributes. Journal of Agronomy and Crop Science, 2021, 207, 59-73.	1.7	41
14	Risk assessment of potentially toxic metal(loid)s in Vigna radiata L. under wastewater and freshwater irrigation. Chemosphere, 2021, 265, 129124.	4.2	28
15	Biochar mitigates arsenic-induced human health risks and phytotoxicity in quinoa under saline conditions by modulating ionic and oxidative stress responses. Environmental Pollution, 2021, 287, 117348.	3.7	29
16	Effects of arsenite on physiological, biochemical and grain yield attributes of quinoa (<i>Chenopodium quinoa</i> Willd.): implications for phytoremediation and health risk assessment. International Journal of Phytoremediation, 2021, 23, 890-898.	1.7	10
17	Comparative physiological and biochemical evaluation of salt and nickel tolerance mechanisms in two contrasting tomato genotypes. Physiologia Plantarum, 2020, 168, 27-37.	2.6	22
18	A new biochar from cotton stalks for As (V) removal from aqueous solutions: its improvement with H3PO4 and KOH. Environmental Geochemistry and Health, 2020, 42, 2519-2534.	1.8	38

#	Article	IF	Citations
19	Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress. Ecotoxicology and Environmental Safety, 2020, 187, 109814.	2.9	63
20	Compositional and health risk assessment of drinking water from health facilities of District Vehari, Pakistan. Environmental Geochemistry and Health, 2020, 42, 2425-2437.	1.8	25
21	Nickel Toxicity Induced Changes in Nutrient Dynamics and Antioxidant Profiling in Two Maize (Zea) Tj ETQq1	0.784314 1.6	rgBT ₅₁ /Overlo
22	Root-mediated acidification and resistance to low calcium improve wheat (Triticum aestivum) performance in saline-sodic conditions. Plant Physiology and Biochemistry, 2020, 156, 201-208.	2.8	7
23	Cadmium Partitioning, Physiological and Oxidative Stress Responses in Marigold (Calendula calypso) Grown on Contaminated Soil: Implications for Phytoremediation. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 270-276.	1.3	30
24	Evaluating the Contribution of Growth, Physiological, and Ionic Components Towards Salinity and Drought Stress Tolerance in Jatropha curcas. Plants, 2020, 9, 1574.	1.6	34
25	Acid treated biochar enhances cadmium tolerance by restricting its uptake and improving physio-chemical attributes in quinoa (Chenopodium quinoa Willd.). Ecotoxicology and Environmental Safety, 2020, 191, 110218.	2.9	38
26	Saline Agriculture: A Climate Smart Integrated Approach for Climate Change Resilience in Degraded Land Areas., 2020,, 2287-2305.		0
27	Redox Mechanisms and Plant Tolerance Under Heavy Metal Stress: Genes and Regulatory Networks. , 2019, , 71-105.		3
28	A Comparative Analysis of Salinity and Nickel Tolerance of Tomato (<i>Solanum lycopersicum</i> Communications in Soil Science and Plant Analysis, 2019, 50, 2294-2308.	0.6	2
29	Biogeochemical behavior of nickel under different abiotic stresses: toxicity and detoxification mechanisms in plants. Environmental Science and Pollution Research, 2019, 26, 10496-10514.	2.7	52
30	Saline Agriculture: A Climate Smart Integrated Approach for Climate Change Resilience in Degraded Land Areas., 2019,, 1-19.		1
31	Residues of endosulfan in cotton growing area of Vehari, Pakistan: an assessment of knowledge and awareness of pesticide use and health risks. Environmental Science and Pollution Research, 2019, 26, 20079-20091.	2.7	29
32	Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: Implications for phytoremediation. Ecotoxicology and Environmental Safety, 2019, 171, 146-153.	2.9	109
33	Foliar uptake of arsenic nanoparticles by spinach: an assessment of physiological and human health risk implications. Environmental Science and Pollution Research, 2019, 26, 20121-20131.	2.7	44
34	Kinetics and Equilibrium Studies of <i>Eriobotrya Japonica:</i> A Novel Adsorbent Preparation for Dyes Sequestration. Zeitschrift Fur Physikalische Chemie, 2019, 233, 1469-1484.	1.4	39
35	A multivariate analysis of physiological and antioxidant responses and health hazards of wheat under cadmium and lead stress. Environmental Science and Pollution Research, 2019, 26, 362-370.	2.7	46
36	Cadmium tolerance and phytoremediation potential of acacia (<i>Acacia nilotica</i> L.) under salinity stress. International Journal of Phytoremediation, 2018, 20, 739-746.	1.7	28

#	Article	IF	CITATIONS
37	A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. Journal of Soils and Sediments, 2018, 18, 2271-2281.	1.5	51
38	Salinity and Low Phosphorus Differentially Affect Shoot and Root Traits in Two Wheat Cultivars with Contrasting Tolerance to Salt. Agronomy, 2018, 8, 155.	1.3	39
39	Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. International Journal of Environmental Research and Public Health, 2018, 15, 59.	1.2	541
40	Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of <i>Pisum sativum</i> . International Journal of Phytoremediation, 2017, 19, 662-669.	1.7	100
41	Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Archives of Agronomy and Soil Science, 2017, 63, 2048-2061.	1.3	74
42	Influence of groundwater and wastewater irrigation on lead accumulation in soil and vegetables: Implications for health risk assessment and phytoremediation. International Journal of Phytoremediation, 2017, 19, 1037-1046.	1.7	92
43	Arsenic tolerance and phytoremediation potential of <i>Conocarpus erectus</i> L. and <i>Populus deltoides</i> L International Journal of Phytoremediation, 2017, 19, 985-991.	1.7	28
44	Physiological and biochemical characterization of <i>Acacia stenophylla</i> exposed to salinity under hydroponic conditions. Canadian Journal of Forest Research, 2017, 47, 1293-1301.	0.8	18
45	Differential accumulation of potassium results in varied salt-tolerance response in tomato (Solanum) Tj ETQq1	1 0.784314 0.7	rgBT /Over
46	Relationship between rhizosphere acidification and phytoremediation in two acacia species. Journal of Soils and Sediments, 2016, 16, 1392-1399.	1.5	45
47	DIFFERENTIAL RESPONSE OF TWO ACACIA SPECIES TO SALINITY AND WATER STRESS. Pakistan Journal of Agricultural Sciences, 2016, 53, 51-57.	0.1	4
48	Heavy Metal Stress and Crop Productivity., 2015,, 1-25.		89
49	Interactive effects of salinity and iron deficiency on different rice genotypes. Journal of Plant Nutrition and Soil Science, 2015, 178, 306-311.	1.1	67
50	Effect of salinity on rhizosphere acidification and antioxidant activity of two acacia species. Canadian Journal of Forest Research, 2015, 45, 124-129.	0.8	23
51	Salinity and drought interaction in wheat (Triticum aestivum L.) is affected by the genotype and plant growth stage. Acta Physiologiae Plantarum, 2013, 35, 2761-2768.	1.0	31
52	Exploring influential plant traits for enhancing upland cotton yield under salt stress. Frontiers of Agriculture in China, 2011, 5, 443-449.	0.2	3
53	Genotypic variation in rice for grain yield and quality as affected by salt-affected field conditions. Journal of Plant Nutrition, 0, , 1-10.	0.9	5