Tadashi Abe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7695399/publications.pdf Version: 2024-02-01

TADASHI ARE

#	Article	IF	CITATIONS
1	EVALUATION OF FATIGUE DURABILITY AND PROPOSAL OF S-N CURVE FOR DECK OF HIGHWAY BRIDGE USING STEEL FIBER REINFORCEMENT CONCRETE. Cement Science and Concrete Technology, 2019, 72, 314-321.	0.1	0
2	Proposition of Thin-Layer Repairing Methods Using Low-Elasticity Polymer Portland Cement Materials and Glue and Study on the Fatigue Resistance of Reinforced Concrete Slab. International Journal of Polymer Science, 2018, 2018, 1-8.	2.7	1
3	STIFFENING EFFECT OF METAL-GRID WITH PCM AS THICKNESS REINFORCEMENT ON DAMAGED RC BEAM. Cement Science and Concrete Technology, 2017, 71, 548-555.	0.1	1
4	EVALUATION OF FATIGUE RESISTANCE OF RC SLABS REINFORCED WITH UPPER SURFACE THICKNESS INCREASED METHOD USING METAL-GRID EXPANDED. Cement Science and Concrete Technology, 2016, 70, 541-548.	0.1	1
5	EVALUATION OF FATIGUE RESISTANCE OF RC MEMBER UNDER COMPOUND DETERIORATION FOR RUNNING FATIGUE AND FROST DAMAGE. Cement Science and Concrete Technology, 2016, 70, 421-427.	0.1	1
6	EVALUATED THE FATIGUE RESISTANCE AND THE CONSISTENCY OF S-N CURVE IN CASE OF APPLIED THE RUNNING VIBRATION LOAD FOR RC SLABS DIFFERENT FROM COMPRESSIVE STRENGTH. Cement Science and Concrete Technology, 2015, 69, 535-542.	0.1	0
7	EVALUATION OF STRENGTHENING EFFECT AND FATIGUE RESISTANCE OF STEEL DECK REINFORCING BY UPPER SURFACE REINFORCEMENT USING SFRC WITH ORDINARY PORTLAND CEMENT AND LOW SHRINKAGE TYPE MIXTURE MATERIAL. Cement Science and Concrete Technology, 2015, 69, 642-649.	0.1	3
8	A STUDY ON STRENGTHEN EFFECT AND S-N CURVE CONSISTENCY VERIFICATION OF THE BOTTOM SURFACE THICKNESS INCREASE STRENGTHENED RC SLABUSING CFRP GRID AND PCM. Cement Science and Concrete Technology, 2015, 69, 650-657.	0.1	1
9	EVALUATION OF FATIGUE RESISTANCE AND STIFFENING EFFECT OF RC SLABS REINFORCED WITH BOTTOM SURFACE THICKNESS INCREASED METHOD USING METAL-GRID EXPANDED. Cement Science and Concrete Technology, 2015, 69, 618-625.	0.1	0
10	STUDY ON STIFFENING EFFECT BY PCM THICKNESS INCREASED METHOD OF 2 TYPES METAL GRID INSTALLED RC BEAMS. Cement Science and Concrete Technology, 2015, 69, 634-641.	0.1	4
11	LOAD-CARRYING CAPACITY OF RC BEAMS STRENGTHENED BY PCM THICKNESS INCREASED METHOD USING METAL-GRID EXPANDED TYPE. Cement Science and Concrete Technology, 2015, 69, 626-633.	0.1	1
12	A STUDY ON FATIGUE DURABILITY OF CFRP GRID INSTALLED RC SLABS AND EFFECTIVENESS OF ADHESIVE. Cement Science and Concrete Technology, 2014, 68, 494-501.	0.1	3
13	EVALUATION OF STIFFENING EFFECT AND FATIGUE RESISTANCE OF ADHESIVE-APPLIED BOTTOM SURFACE THICKNESS INCREASE RC SLAB WITH CFRP GRID. Cement Science and Concrete Technology, 2014, 68, 502-509.	0.1	1
14	FUNDAMENTAL STUDY ON BENDING FATIGUE CHARACTERISTIC OF ULTRA HIGH STRENGTH FIBER REINFORCED CONCRETE BEAM MEMBER USING ORGANIC FIBER. Cement Science and Concrete Technology, 2014, 67, 386-392.	0.1	0
15	THE PROPOSAL OF REPAIRING MATERIAL USED ON UPPER SURFACE DAMAGE AND EVALUATION OF FATIGUE RESISTANCE IN A REPAIRING-CYCLES. Cement Science and Concrete Technology, 2013, 67, 545-552.	0.1	0
16	DETERIORATION DIAGNOSIS OF RC SLABS SUBJECTED TO COMPLEX DETERIORATION OF SALT AND COLD DAMAGE AND EVALUATION OF FATIGUE RESISTANCE BY UPPER SURFACE THICKNESS INCREASING REINFORCE METHOD. Cement Science and Concrete Technology, 2013, 67, 537-544.	0.1	0
17	EVALUATION OF FATIGUE RESISTANCE IN RUNNING WHEEL LOAD TESTS OF RC SLABS REINFORCED WITH UFC PANEL TOP SURFACE BONDED. Cement Science and Concrete Technology, 2012, 66, 568-575.	0.1	0
18	EVALUATION OF THE FATIGUE RESISTANCE OF RC SLABS STRENGTHENED BY BONDING CFS, CFSS LATTICES, AND PROPOSAL OF AN S-N CURVE EQUATION. Cement Science and Concrete Technology, 2012, 66, 576-583.	0.1	2

#	Article	IF	CITATIONS
19	EVALUATION OF THE FAILURE STATES AND FATIGUE RESISTANCE FOR PRIMARY AND SECONDARY METHODS FOR RC SLAB THAT WERE SUBJECT TO CRACKING DAMAGE. Cement Science and Concrete Technology, 2012, 66, 560-567.	0.1	0
20	EXPERIMENTAL STUDY ON FAILURE MECHANISM OF AND AXIAL COMPRESSIVE LOAD-CARRYING CAPACITY OF UFC-RC COMPOSITE AND RC COLUMN MEMBERS. Cement Science and Concrete Technology, 2012, 66, 545-551.	0.1	0
21	FUNDAMENTAL STUDY ON FATIGUE RESISTANCE OF ULTRA HIGH STRENGTH FIBER REINFORCED CONCRETE BEAM MEMBER USING ORGANIC FIBER. Cement Science and Concrete Technology, 2012, 66, 479-484.	0.1	0
22	EVALUATION OF THE PUNCHING SHEAR STRENGTH AND FATIGUE RESISTANCE OF ROAD BRIDGE RC SLABS. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering & Earthquake Engineering) Tj ETQq0 0 0	r gBI /Ove	rløck 10 Tf 5
23	EVALUATION OF FATIGUE RESISTANCE AND MAINTENANCE OF RC SLAB REINFORCED BY CFS UNDER RUNNING WHEEL LOAD. Cement Science and Concrete Technology, 2011, 65, 493-500.	0.1	1
24	EVALUATION OF FATIGUE RESISTANCE AND MAINTENANCE METHOD OF RC SLAB WITH THE TOP SURFACE REINFORCED BY OVERLAYING THE SFRC. Cement Science and Concrete Technology, 2011, 65, 485-492.	0.1	2
25	ADHESION EFFECT OF SURFACE AND EVALUATION OF FATIQUE CHARACTERISTIC OF WET STATE RC SLAB USING SFRC OVERLAY METHOD. Cement Science and Concrete Technology, 2011, 65, 477-484.	0.1	1
26	FAILURE MECHANISM AND STATIC LOOD-CARRYING CAPACITY PERFORMANCE OF EXTERNAL CABLE STYLE ARCH SLAB. Cement Science and Concrete Technology, 2010, 64, 568-574.	0.1	0
27	FATIGUE RESISTANCE OF DETERIORATED RC SLABS WITH THE BOTTOM REINFORCED WITH CFSS AND THE TOP OVERLAID WITH SFRC. Cement Science and Concrete Technology, 2010, 64, 485-492.	0.1	2
28	FATIGUE RESISTANCE OF RC SLABS OVERLAID WITH THE SFRC DETERMINED FROM FATIGUE TESTS UNDER RUNNING WHEEL LOADS. Cement Science and Concrete Technology, 2010, 64, 493-500.	0.1	0
29	EVALUATION ON THE EFFECTS OF CONCRETE COMPRESSIVE STRENGTH UNDER THE FATIGUE RESISTANCE LOAD FOR RC SLABS IN HIGHWAY BRIDGE. Cement Science and Concrete Technology, 2010, 64, 552-559.	0.1	0
30	FATIGUE RESISTANCE OF REINFORCEMENT BY CONCRETE OVERLAY OF RC SLABS USING CFRP GRID. Cement Science and Concrete Technology, 2009, 63, 530-537.	0.1	3
31	FATIGUE RESISTANCE AND FAILURE MODES ON RC SLAB OVERLAID CONCRETE USING ADHESIVES. Cement Science and Concrete Technology, 2009, 63, 538-545.	0.1	1
32	THE FINITE ELEMENT ANALYSIS ON STEEL REBARS AND CFRP BARS USED AS THE MAIN REINFORCEMENT IN RC BEAMS. Cement Science and Concrete Technology, 2009, 63, 592-598.	0.1	0
33	STUDY ON DETERIORATION STATE AND DECREASING IN THE PUNCHING SHEAR LOAD-CARRYING CAPACITY OF RC SLAB UNDER THE SALTã∱»FROST DAMAGES AND THE STRESS-HYSTERESIS BY RUNNING VIBRATION LOADS. Cement Science and Concrete Technology, 2009, 63, 478-485.	0.1	0
34	MAXIMUM LOAD-CARRYING CAPACITY AND FAILURE MECHANISM OF RC SLABS USING UFC LAYING FORMS UNDER STATIC LOADS AND RUNNING LOADS. Cement Science and Concrete Technology, 2009, 63, 507-514.	0.1	0
35	Upper-Bound Equation of Compressive Load-Carrying Capacity of RC Column Considering Characteristic of Material and Buckling of Primary Reinforcement. Zairyo/Journal of the Society of Materials Science, Japan, 2001, 50, 96-102.	0.2	0