Evgeny Volodin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7695151/publications.pdf

Version: 2024-02-01

68	1,721	18	39
papers	citations	h-index	g-index
69	69	69	2262
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya - Atmospheric and Oceanic Physics, 2010, 46, 414-431.	0.9	369
2	Climate model projections from the Scenario Model Intercomparison ProjectÂ(ScenarioMIP) of CMIP6. Earth System Dynamics, 2021, 12, 253-293.	7.1	236
3	Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 141-162.	3.0	121
4	Simulation of the present-day climate with the climate model INMCM5. Climate Dynamics, 2017, 49, 3715-3734.	3.8	112
5	Global mean cloud feedbacks in idealized climate change experiments. Geophysical Research Letters, 2006, 33, .	4.0	58
6	Simulation of observed climate changes in 1850–2014 with climate model INM-CM5. Earth System Dynamics, 2018, 9, 1235-1242.	7.1	55
7	Uncertainty in the Response of Sudden Stratospheric Warmings and Stratosphereâ€Troposphere Coupling to Quadrupled CO ₂ Concentrations in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032345.	3.3	50
8	Probability distributions for cyclones and anticyclones from the NCEP/NCAR reanalysis data and the INM RAS climate model. Izvestiya - Atmospheric and Oceanic Physics, 2007, 43, 705-712.	0.9	44
9	Numerical simulation of large-scale ocean circulation based on the multicomponent splitting method. Russian Journal of Numerical Analysis and Mathematical Modelling, 2010, 25, .	0.6	42
10	Simulation and prediction of climate changes in the 19th to 21st centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, model of the Earth's climate system. Izvestiya - Atmospheric and Oceanic Physics, 2013, 49, 347-366.	0.9	42
11	Simulation of modern climate with the new version of the INM RAS climate model. Izvestiya - Atmospheric and Oceanic Physics, 2017, 53, 142-155.	0.9	40
12	Variation of the global electric circuit and lonospheric potential in a general circulation model. Geophysical Research Letters, 2014, 41, 9009-9016.	4.0	36
13	Combined chemistry-climate model of the atmosphere. Izvestiya - Atmospheric and Oceanic Physics, 2007, 43, 399-412.	0.9	34
14	Relation between temperature sensitivity to doubled carbon dioxide and the distribution of clouds in current climate models. Izvestiya - Atmospheric and Oceanic Physics, 2008, 44, 288-299.	0.9	30
15	Simulation of climate changes in the 20th–22nd centuries with a coupled atmosphere-ocean general circulation model. Izvestiya - Atmospheric and Oceanic Physics, 2006, 42, 267-281.	0.9	29
16	Development of the multiscale version of the SL-AV global atmosphere model. Russian Meteorology and Hydrology, 2015, 40, 374-382.	1.3	29
17	The aerosol module in the INM RAS climate model. Russian Meteorology and Hydrology, 2016, 41, 519-528.	1.3	25
18	Methane cycle in the INM RAS climate model. Izvestiya - Atmospheric and Oceanic Physics, 2008, 44, 153-159.	0.9	20

#	Article	IF	CITATIONS
19	Atmosphere-ocean general circulation model with the carbon cycle. Izvestiya - Atmospheric and Oceanic Physics, 2007, 43, 266-280.	0.9	18
20	Summer temperature standard deviation, skewness and strong positive temperature anomalies in the present day climate and under global warming conditions. Climate Dynamics, 2013, 40, 1387-1398.	3.8	17
21	The mechanism of multidecadal variability in the Arctic and North Atlantic in climate model INMCM4. Environmental Research Letters, 2013, 8, 035038.	5.2	16
22	Study of the Variability of Spring Breakup Dates and Arctic Stratospheric Polar Vortex Parameters from Simulation and Reanalysis Data. Izvestiya - Atmospheric and Oceanic Physics, 2020, 56, 458-469.	0.9	16
23	Analysis of the reproduction of dynamic processes in the stratosphere using the climate model of the institute of numerical mathematics, Russian academy of sciences. Izvestiya - Atmospheric and Oceanic Physics, 2016, 52, 1-15.	0.9	15
24	Problems of modeling climate and climate change. Izvestiya - Atmospheric and Oceanic Physics, 2006, 42, 568-585.	0.9	14
25	Simulation of the quasi-biennial oscillations of the zonal wind in the equatorial stratosphere: Part II. Atmospheric general circulation models. Izvestiya - Atmospheric and Oceanic Physics, 2009, 45, 37-54.	0.9	14
26	Simulation of Possible Future Climate Changes in the 21st Century in the INM-CM5 Climate Model. Izvestiya - Atmospheric and Oceanic Physics, 2020, 56, 218-228.	0.9	13
27	Analysis of Simulation of Stratosphere-troposphere Dynamical Coupling with the INM-CM5 Climate Model. Russian Meteorology and Hydrology, 2018, 43, 780-786.	1.3	12
28	Simulation of climate change induced by injection of sulfur compounds into the stratosphere. lzvestiya - Atmospheric and Oceanic Physics, 2011, 47, 430-438.	0.9	11
29	Coupled simulation of climate and vegetation dynamics. Izvestiya - Atmospheric and Oceanic Physics, 2011, 47, 531-539.	0.9	11
30	The Mechanisms of Cloudiness Evolution Responsible for Equilibrium Climate Sensitivity in Climate Model INM M4â€8. Geophysical Research Letters, 2021, 48, e2021GL096204.	4.0	10
31	Simulation of the spatiotemporal variability of the World Ocean sea surface hight by the INM climate models. Izvestiya - Atmospheric and Oceanic Physics, 2016, 52, 376-385.	0.9	9
32	Influence of a Salt Plume Parameterization in a Coupled Climate Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 2357-2373.	3.8	9
33	Application of the Land Surface Model SWAP and Global Climate Model INMCM4.0 for Projecting Runoff of Northern Russian Rivers. 2. Projections and Their Uncertainties. Water Resources, 2018, 45, 85-92.	0.9	9
34	Investigation of the Structure and Predictability of the First Mode of Stratospheric Variability Based on the INM RAS Climate Model. Russian Meteorology and Hydrology, 2018, 43, 737-742.	1.3	8
35	Evaluation of the INM RAS climate model skill in climate indices and stratospheric anomalies on seasonal timescale. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 73, 1892435.	1.7	8
36	The model of the Earth system developed at the INM RAS. Russian Journal of Numerical Analysis and Mathematical Modelling, 2010, 25, .	0.6	7

#	Article	IF	CITATIONS
37	Possible reasons for low climate-model sensitivity to increased carbon dioxide concentrations. Izvestiya - Atmospheric and Oceanic Physics, 2014, 50, 350-355.	0.9	7
38	Mathematical simulation of Earth system dynamics. Izvestiya - Atmospheric and Oceanic Physics, 2015, 51, 227-240.	0.9	7
39	The representation of ionospheric potential in the global chemistry-climate model SOCOL. Science of the Total Environment, 2019, 697, 134172.	8.0	7
40	Methane Emission in the Russian Permafrost Zone and Evaluation of Its Impact on Global Climate. Russian Meteorology and Hydrology, 2020, 45, 377-385.	1.3	7
41	Simulation of Climate and Weather Extreme Indices with the INM-CM5 Climate Model. Russian Meteorology and Hydrology, 2018, 43, 756-762.	1.3	6
42	Application of the Land Surface Model SWAP and Global Climate Model INMCM4.0 for Projecting Runoff of Northern Russian Rivers. 1. Historical Simulations. Water Resources, 2018, 45, 73-84.	0.9	6
43	Reproduction of World Ocean Circulation by the CORE-II Scenario with the Models INMOM and INMIO. Izvestiya - Atmospheric and Oceanic Physics, 2018, 54, 86-100.	0.9	6
44	Climate Version of the SL-AV Global Atmospheric Model: Development and Preliminary Results. Russian Meteorology and Hydrology, 2019, 44, 13-22.	1.3	6
45	Relationships between interannual variations in stratospheric warmings, tropospheric circulation, and sea surface temperature in the Northern Hemisphere. Izvestiya - Atmospheric and Oceanic Physics, 2008, 44, 594-605.	0.9	5
46	Simulation of the quasi-biennial oscillations of the zonal wind in the equatorial stratosphere: Part I. Low-parameter models. Izvestiya - Atmospheric and Oceanic Physics, 2008, 44, 3-17.	0.9	5
47	Possibility of geoengineering stabilization of global temperature in the 21st century using the stratospheric aerosol and estimation of potential negative effects. Russian Meteorology and Hydrology, 2013, 38, 371-381.	1.3	5
48	Changes of cooling near mesopause under global warming from observations and model simulations. Izvestiya - Atmospheric and Oceanic Physics, 2017, 53, 383-391.	0.9	5
49	Impact of Sea Surface Temperature Anomalies in the Equatorial and North Pacific on the Arctic Stratosphere According to the INMCM5 Climate Model Simulations. Russian Meteorology and Hydrology, 2021, 46, 1-9.	1.3	5
50	Equilibrium Sensitivity of a Climate Model to an Increase in the Atmospheric CO2 Concentration Using Different Methods to Account for Cloudiness. Izvestiya - Atmospheric and Oceanic Physics, 2021, 57, 127-132.	0.9	5
51	Experimental Studies of Seasonal Weather Predictability Based on the INM RAS Climate Model. Mathematical Models and Computer Simulations, 2021, 13, 571-578.	0.5	5
52	Methods and efficiency estimation of parallel implementation of the $\dagger f$ -model of general ocean circulation. Russian Journal of Numerical Analysis and Mathematical Modelling, 2011, 26, .	0.6	4
53	Influence of methane sources in Northern Hemisphere high latitudes on the interhemispheric asymmetry of its atmospheric concentration and climate. Izvestiya - Atmospheric and Oceanic Physics, 2015, 51, 251-258.	0.9	4
54	Nature of the Decrease in Global Warming at the Beginning of the 21st Century. Doklady Earth Sciences, 2018, 482, 1221-1224.	0.7	4

#	Article	IF	CITATIONS
55	Troposphere Vertical Structure Simulation with the INMCN Climate Model. Russian Meteorology and Hydrology, 2019, 44, 103-111.	1.3	4
56	Relationship between Natural Climate Variability and Equilibrium Sensitivity in the Climate Model of the Institute of Numerical Mathematics of the Russian Academy of Sciences to Increasing $\theta_i\theta$ ž2. Izvestiya - Atmospheric and Oceanic Physics, 2021, 57, 447-450.	0.9	4
57	Estimation of the Contribution of Different Mechanisms to the Phase Evolution of Quasi-Biennial Oscillation Using the Results of Climate Simulation. Izvestiya - Atmospheric and Oceanic Physics, 2019, 55, 32-37.	0.9	3
58	Stratospheric Circulation Modeling with the SL-AV Semi-Lagrangian Atmospheric Model. Russian Meteorology and Hydrology, 2019, 44, 1-12.	1.3	3
59	Investigation of boreal storm tracks in historical simulations of INM CM5 and reanalysis data. IOP Conference Series: Earth and Environmental Science, 2019, 386, 012007.	0.3	3
60	Influence of various parameters of INM RAS climate model on the results of extreme precipitation simulation. IOP Conference Series: Earth and Environmental Science, 2019, 386, 012012.	0.3	3
61	Improving the Calculation of the Sulfate Aerosol Evolution and Radiative Effects in the Institute of Numerical Mathematics, Russian Academy of Sciences, Climate Model. Izvestiya - Atmospheric and Oceanic Physics, 2021, 57, 370-378.	0.9	3
62	Variation of Northern Hemispheric Wintertime Storm Tracks under Future Climate Change in INM-CM5 Simulations. Izvestiya - Atmospheric and Oceanic Physics, 2022, 58, 208-218.	0.9	3
63	Modelling the climate system response to small external forcing. Russian Journal of Numerical Analysis and Mathematical Modelling, 2004, 19, .	0.6	2
64	On the Mechanism of Arctic Climate Oscillation with a Period of About 15 Years According to Data of the INM RAS Climate Model. Izvestiya - Atmospheric and Oceanic Physics, 2020, 56, 112-122.	0.9	2
65	Role of Penetrative Convection under the Ice in the Formation of the State of the World Ocean. Izvestiya - Atmospheric and Oceanic Physics, 2018, 54, 594-607.	0.9	1
66	Equilibrium State of the Greenland Ice Sheet in the Earth System Model. Russian Meteorology and Hydrology, 2018, 43, 63-71.	1.3	1
67	Applying the Energy- and Water Balance Model for Incorporation of the Cryospheric Component into a Climate Model. Part III. Modeling Mass Balance on the Surface of the Antarctic Ice Sheet. Russian Meteorology and Hydrology, 2019, 44, 87-96.	1.3	1
68	Northward flux of zonal velocity due to quasi-stationary and nonstationary waves in the atmosphere during northern hemisphere winter. Russian Meteorology and Hydrology, 2007, 32, 627-633.	1.3	0