Koen Beerens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/769502/publications.pdf Version: 2024-02-01

KOEN REEDENS

#	Article	IF	CITATIONS
1	Enzymes for the biocatalytic production of rare sugars. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 823-834.	1.4	157
2	FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants. PLoS Computational Biology, 2015, 11, e1004556.	1.5	144
3	UDP-hexose 4-epimerases: a view on structure, mechanism andÂsubstrate specificity. Carbohydrate Research, 2015, 414, 8-14.	1.1	55
4	A structural classification of carbohydrate epimerases: From mechanistic insights to practical applications. Biotechnology Advances, 2015, 33, 1814-1828.	6.0	42
5	Biocatalytic Synthesis of the Rare Sugar Kojibiose: Process Scale-Up and Application Testing. Journal of Agricultural and Food Chemistry, 2017, 65, 6030-6041.	2.4	40
6	Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating. Scientific Reports, 2017, 7, 16321.	1.6	39
7	Disulfide bridges as essential elements for the thermostability of lytic polysaccharide monooxygenase LPMO10C from Streptomyces coelicolor. Protein Engineering, Design and Selection, 2017, 30, 401-408.	1.0	29
8	Rational design of an improved transglucosylase for production of the rare sugar nigerose. Chemical Communications, 2019, 55, 4531-4533.	2.2	26
9	Site-Specific Analysis of Protein Hydration Based on Unnatural Amino Acid Fluorescence. Journal of the American Chemical Society, 2015, 137, 4988-4992.	6.6	25
10	Molecular Gating of an Engineered Enzyme Captured in Real Time. Journal of the American Chemical Society, 2018, 140, 17999-18008.	6.6	25
11	Evolutionary Analysis As a Powerful Complement to Energy Calculations for Protein Stabilization. ACS Catalysis, 2018, 8, 9420-9428.	5.5	20
12	Thermostable alpha-glucan phosphorylases: characteristics and industrial applications. Applied Microbiology and Biotechnology, 2018, 102, 8187-8202.	1.7	20
13	Converting Galactose into the Rare Sugar Talose with Cellobiose 2-Epimerase as Biocatalyst. Molecules, 2018, 23, 2519.	1.7	17
14	Structure-function relationships in NDP-sugar active SDR enzymes: Fingerprints for functional annotation and enzyme engineering. Biotechnology Advances, 2021, 48, 107705.	6.0	17
15	Engineering of cellobiose phosphorylase for the defined synthesis of cellotriose. Applied Microbiology and Biotechnology, 2020, 104, 8327-8337.	1.7	15
16	Characterization of the First Bacterial and Thermostable GDP-Mannose 3,5-Epimerase. International Journal of Molecular Sciences, 2019, 20, 3530.	1.8	14
17	Stereo-electronic control of reaction selectivity in short-chain dehydrogenases: Decarboxylation, epimerization, and dehydration. Current Opinion in Chemical Biology, 2021, 61, 43-52.	2.8	14
18	Characterization and mutational analysis of the UDP-Glc(NAc) 4-epimerase from Marinithermus hydrothermalis. Applied Microbiology and Biotechnology, 2013, 97, 7733-7740.	1.7	13

KOEN BEERENS

#	Article	IF	CITATIONS
19	The "epimerring―highlights the potential of carbohydrate epimerases for rare sugar production. Biocatalysis and Biotransformation, 2017, 35, 230-237.	1.1	13
20	Oral Microbiota Display Profound Differential Metabolic Kinetics and Community Shifts upon Incubation with Sucrose, Trehalose, Kojibiose, and Xylitol. Applied and Environmental Microbiology, 2020, 86, .	1.4	11
21	β-Glucan phosphorylases in carbohydrate synthesis. Applied Microbiology and Biotechnology, 2021, 105, 4073-4087.	1.7	10
22	Engineering of a Thermostable Biocatalyst for the Synthesis of 2â€ <i>O</i> â€Glucosylglycerol. ChemBioChem, 2021, 22, 2777-2782.	1.3	9
23	GDP-Mannose 3,5-Epimerase: A View on Structure, Mechanism, and Industrial Potential. Frontiers in Molecular Biosciences, 2021, 8, 784142.	1.6	9
24	Nucleotide sugar dehydratases: Structure, mechanism, substrate specificity, and application potential. Journal of Biological Chemistry, 2022, 298, 101809.	1.6	9
25	Determinants of the Nucleotide Specificity in the Carbohydrate Epimerase Family 1. Biotechnology Journal, 2020, 15, e2000132.	1.8	6
26	Exploration of GH94 Sequence Space for Enzyme Discovery Reveals a Novel Glucosylgalactose Phosphorylase Specificity. ChemBioChem, 2021, 22, 3319-3325.	1.3	6
27	GDP-altrose as novel product of GDP-mannose 3,5-epimerase: Revisiting its reaction mechanism. International Journal of Biological Macromolecules, 2020, 165, 1862-1868.	3.6	5
28	Synthesis, trehalase hydrolytic resistance and inhibition properties of 4- and 6-substituted trehalose derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1964-1989.	2.5	5
29	Expanding the Enzyme Repertoire for Sugar Nucleotide Epimerization: the CDP-Tyvelose 2-Epimerase from Thermodesulfatator atlanticus for Glucose/Mannose Interconversion. Applied and Environmental Microbiology, 2021, 87, .	1.4	5
30	Metabolism and Health Effects of Rare Sugars in a CACO-2/HepG2 Coculture Model. Nutrients, 2022, 14, 611.	1.7	5
31	Novel Insights into the Existence of the Putative UDP-Glucuronate 5-Epimerase Specificity. Catalysts, 2020, 10, 222.	1.6	4
32	Sweet Biotechnology: Enzymatic Production and Digestibility Screening of Novel Kojibiose and Nigerose Analogues. Journal of Agricultural and Food Chemistry, 2022, 70, 3502-3511.	2.4	2