Andrew Adamatzky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7694924/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein Structured Reservoir Computing for Spike-Based Pattern Recognition. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 322-331.	4.0	4
2	Fungal electronics. BioSystems, 2022, 212, 104588.	0.9	14
3	Fungi anaesthesia. Scientific Reports, 2022, 12, 340.	1.6	3
4	Marimo actuated rover systems. Journal of Biological Engineering, 2022, 16, 3.	2.0	1
5	Living mycelium composites discern weights via patterns of electrical activity. Journal of Bioresources and Bioproducts, 2022, 7, 26-32.	11.8	18
6	Neuroscience without neurons. AIP Conference Proceedings, 2022, , .	0.3	1
7	Language of fungi derived from their electrical spiking activity. Royal Society Open Science, 2022, 9, 211926.	1.1	29
8	Chlorella sensors in liquid marbles and droplets. Sensing and Bio-Sensing Research, 2022, 36, 100491.	2.2	2
9	On Fungal Automata. Emergence, Complexity and Computation, 2022, , 455-483.	0.2	2
10	Living wearables: Bacterial reactive glove. BioSystems, 2022, 218, 104691.	0.9	10
11	Chemical Wave Computing from Labware to Electrical Systems. Electronics (Switzerland), 2022, 11, 1683.	1.8	3
12	Memristor-based Oscillator for Complex Chemical Wave Logic Computations: Fredkin Gate Paradigm. , 2022, , .		0
13	Reactive fungal wearable. BioSystems, 2021, 199, 104304.	0.9	41
14	Electrical Resistive Spiking of Fungi. Biophysical Reviews and Letters, 2021, 16, 1-7.	0.9	6
15	Towards Embedded Computation with Building Materials. Materials, 2021, 14, 1724.	1.3	5
16	In silico optimization of cancer therapies with multiple types of nanoparticles applied at different times. Computer Methods and Programs in Biomedicine, 2021, 200, 105886.	2.6	9
17	Acetobacter Biofilm: Electronic Characterization and Reactive Transduction of Pressure. ACS Biomaterials Science and Engineering, 2021, 7, 1651-1662.	2.6	11
18	Conway's Game of Life in Quantum-dot Cellular Automata, Microelectronics Journal, 2021, 109, 104972	1.1	4

#	Article	IF	CITATIONS
19	Metameric representations on optimization of nano particle cancer treatment. Biocybernetics and Biomedical Engineering, 2021, 41, 352-361.	3.3	4
20	Electrical activity of fungi: Spikes detection and complexity analysis. BioSystems, 2021, 203, 104373.	0.9	26
21	Towards fungal sensing skin. Fungal Biology and Biotechnology, 2021, 8, 6.	2.5	13
22	Cellular automata implementation of Oregonator simulating light-sensitive Belousov–Zhabotinsky medium. Nonlinear Dynamics, 2021, 104, 4103-4115.	2.7	14
23	Editorial: Computational approaches in cancer modelling. BioSystems, 2021, 204, 104385.	0.9	3
24	Stimulating Fungi <i>Pleurotus ostreatus</i> with Hydrocortisone. ACS Biomaterials Science and Engineering, 2021, 7, 3718-3726.	2.6	12
25	Light sensitive Belousov–Zhabotinsky medium accommodates multiple logic gates. BioSystems, 2021, 206, 104447.	0.9	10
26	Towards proteinoid computers. Hypothesis paper. BioSystems, 2021, 208, 104480.	0.9	22
27	On electrical gates on fungal colony. BioSystems, 2021, 209, 104507.	0.9	4
28	Mem-fractive properties of mushrooms. Bioinspiration and Biomimetics, 2021, 16, 066026.	1.5	19
29	On Electrical Spiking of <i>Ganoderma resinaceum</i> . Biophysical Reviews and Letters, 2021, 16, 133-141.	0.9	11
30	Evolutionary Algorithms Designing Nanoparticle Cancer Treatments with Multiple Particle Types [Application Notes]. IEEE Computational Intelligence Magazine, 2021, 16, 85-99.	3.4	2
31	Margolus Chemical Wave Logic Gate with Memristive Oscillatory Networks. , 2021, , .		3
32	Liquid Marble Photosensor. ChemPhysChem, 2020, 21, 90-98.	1.0	9
33	Liquid metal droplet solves maze. Soft Matter, 2020, 16, 1455-1462.	1.2	18
34	On resistance switching and oscillations in tubulin microtubule droplets. Journal of Colloid and Interface Science, 2020, 560, 589-595.	5.0	7
35	Contactless sensing of liquid marbles for detection, characterisation & computing. Lab on A Chip, 2020, 20, 136-146.	3.1	13
36	On interplay between excitability and geometry. BioSystems, 2020, 187, 104034.	0.9	7

#	Article	IF	CITATIONS
37	Cellular automaton simulation of the quantum war of attrition game. Quantum Information Processing, 2020, 19, 1.	1.0	4
38	Implementation and Optimization of Chemical Logic Gates Using Memristive Cellular Automata. , 2020, ,		5
39	Three types of logical structure resulting from the trilemma of free will, determinism and locality. BioSystems, 2020, 195, 104151.	0.9	7
40	Computational universality of fungal sandpile automata. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126541.	0.9	7
41	A Novel Method for Reconstructing CT Images in GATE/GEANT4 with Application in Medical Imaging: A Complexity Analysis Approach. Journal of Information Processing, 2020, 28, 161-168.	0.3	4
42	Novelty search employed into the development of cancer treatment simulations. Informatics in Medicine Unlocked, 2020, 19, 100347.	1.9	8
43	Tactile sensing and computing on a random network of conducting fluid channels. Flexible and Printed Electronics, 2020, 5, 025006.	1.5	14
44	Spatial simulation of the quantum Bertrand duopoly game. Physica A: Statistical Mechanics and Its Applications, 2020, 557, 124867.	1.2	6
45	On Boolean gates in fungal colony. BioSystems, 2020, 193-194, 104138.	0.9	33
46	Actin networks voltage circuits. Physical Review E, 2020, 101, 052314.	0.8	5
47	Fungal Automata. Complex Systems, 2020, 29, 759-778.	0.9	4
48	On Buildings that Compute. A Proposal. Emergence, Complexity and Computation, 2020, , 311-335.	0.2	1
49	Modelling Microbial Fuel Cells Using Lattice Boltzmann Methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 2035-2045.	1.9	4
50	Neuromorphic Liquid Marbles with Aqueous Carbon Nanotube Cores. Langmuir, 2019, 35, 13182-13188.	1.6	7
51	Electrical Properties of Solvated Tectomers: Toward Zettascale Computing. Advanced Electronic Materials, 2019, 5, 1900202.	2.6	6
52	Marimo machines: oscillators, biosensors and actuators. Journal of Biological Engineering, 2019, 13, 72.	2.0	5
53	On measuring nanoparticle toxicity and clearance with Paramecium caudatum. Scientific Reports, 2019, 9, 8957.	1.6	5
54	Thermal switch of oscillation frequency in Belousov–Zhabotinsky liquid marbles. Royal Society Open Science, 2019, 6, 190078.	1.1	19

#	Article	IF	CITATIONS
55	Belousov-Zhabotinsky liquid marbles in robot control. Sensors and Actuators B: Chemical, 2019, 295, 194-203.	4.0	6
56	Perturbations and phase transitions in swarm optimization algorithms. Natural Computing, 2019, 18, 579-591.	1.8	6
57	Towards an evolvable cancer treatment simulator. BioSystems, 2019, 182, 1-7.	0.9	21
58	A brief history of liquid computers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180372.	1.8	46
59	On discovering functions in actin filament automata. Royal Society Open Science, 2019, 6, 181198.	1.1	5
60	Belousov–Zhabotinsky reaction in liquid marbles. JPhys Materials, 2019, 2, 015005.	1.8	23
61	Mapping outcomes of liquid marble collisions. Soft Matter, 2019, 15, 3541-3551.	1.2	14
62	Towards experimental P-systems using multivesicular liposomes. Journal of Membrane Computing, 2019, 1, 20-28.	1.0	16
63	Plant leaf computing. BioSystems, 2019, 182, 59-64.	0.9	12
64	Computing on actin bundles network. Scientific Reports, 2019, 9, 15887.	1.6	11
65	Actin droplet machine. Royal Society Open Science, 2019, 6, 191135.	1.1	4
66	Exploring Tehran with Excitable Medium. , 2019, , 445-488.		2
67	Chemical Excitable Medium in Barcelona Street Network as a Method for Panicked Crowds Behavior Analysis. Complex Systems, 2019, 28, 41-58.	0.9	1
68	Mimicking Physarum Space Exploration with Networks of Memristive Oscillators. , 2019, , 1241-1274.		1
69	Logical Gates via Gliders Collisions. Emergence, Complexity and Computation, 2018, , 199-220.	0.2	1
70	Evaporation, Lifetime, and Robustness Studies of Liquid Marbles for Collision-Based Computing. Langmuir, 2018, 34, 2573-2580.	1.6	44
71	Slime mould: The fundamental mechanisms of biological cognition. BioSystems, 2018, 165, 57-70.	0.9	67
72	Maze Solvers Demystified and Some Other Thoughts. Emergence, Complexity and Computation, 2018, , 421-438.	0.2	1

#	Article	IF	CITATIONS
73	Living architecture: workshop report from the European Conference on Artificial Life, Lyon, France, 4 September 2017. Adaptive Behavior, 2018, 26, 85-88.	1.1	1
74	Toxicity and Applications of Internalised Magnetite Nanoparticles Within Live Paramecium caudatum Cells. BioNanoScience, 2018, 8, 90-94.	1.5	10
75	Computing via material topology optimisation. Applied Mathematics and Computation, 2018, 318, 109-120.	1.4	6
76	Generative complexity of Gray–Scott model. Communications in Nonlinear Science and Numerical Simulation, 2018, 56, 457-466.	1.7	9
77	Biolithography: Slime mould patterning of polyaniline. Applied Surface Science, 2018, 435, 1344-1350.	3.1	6
78	A Parallel Modular Biomimetic Cilia Sorting Platform. Biomimetics, 2018, 3, 5.	1.5	6
79	Towards fungal computer. Interface Focus, 2018, 8, 20180029.	1.5	34
80	Liquid Marble Actuator for Microfluidic Logic Systems. Scientific Reports, 2018, 8, 14153.	1.6	22
81	Slime Mold Computing. , 2018, , 431-446.		1
82	Reaction-Diffusion Computing. , 2018, , 171-194.		2
83	Hardware Implementation of a Biomimicking Hybrid CA. Lecture Notes in Computer Science, 2018, , 80-91.	1.0	0
84	On spiking behaviour of oyster fungi Pleurotus djamor. Scientific Reports, 2018, 8, 7873.	1.6	65
85	A Cilia-inspired Closed-loop Sensor-actuator Array. Journal of Bionic Engineering, 2018, 15, 526-532.	2.7	5
86	Coupled Physarum-Inspired Memristor Oscillators for Neuron-like Operations. , 2018, , .		7
87	Street map analysis with excitable chemical medium. Physical Review E, 2018, 98, 012306.	0.8	6
88	PhyChip: Growing Computers with Slime Mould. Natural Computing Series, 2018, , 111-128.	2.2	0
89	Fluidic gates simulated with lattice Boltzmann method under different Reynolds numbers. Journal of Computational Science, 2018, 28, 51-58.	1.5	3
90	Mechanical Sequential Counting withÂLiquid Marbles. Lecture Notes in Computer Science, 2018, , 59-71.	1.0	4

#	Article	IF	CITATIONS
91	Phase Transitions in Swarm Optimization Algorithms. Lecture Notes in Computer Science, 2018, , 204-216.	1.0	3
92	Chemical Computing Through Simulated Evolution. Emergence, Complexity and Computation, 2018, , 269-286.	0.2	2
93	Discovering Boolean Gates in Slime Mould. Emergence, Complexity and Computation, 2018, , 323-337.	0.2	13
94	Computers from Plants We Never Made: Speculations. Emergence, Complexity and Computation, 2018, , 357-387.	0.2	13
95	Simple Networks on Complex Cellular Automata: From de Bruijn Diagrams to Jump-Graphs. Emergence, Complexity and Computation, 2018, , 241-264.	0.2	2
96	Representation of shape mediated by environmental stimuli in Physarum polycephalum and a multi-agent model. International Journal of Parallel, Emergent and Distributed Systems, 2017, 32, 166-184.	0.7	9
97	On coupled oscillator dynamics and incident behaviour patterns in slime mould <i>Physarum polycephalum</i> : emergence of wave packets, global streaming clock frequencies and anticipation of periodic stimuli. International Journal of Parallel, Emergent and Distributed Systems, 2017, 32, 95-118.	0.7	2
98	Evaluation of French motorway network in relation to slime mould transport networks. Environment and Planning B: Urban Analytics and City Science, 2017, 44, 364-383.	1.0	5
99	An intelligent physarum solver for supply chain network design under profit maximization and oligopolistic competition. International Journal of Production Research, 2017, 55, 244-263.	4.9	39
100	Physarum Inspired Audio: From Oscillatory Sonification to Memristor Music. , 2017, , 181-218.		0
101	What if houses were powered by milk?. BioSystems, 2017, 153-154, 1-5.	0.9	3
102	Particle sorting by Paramecium cilia arrays. BioSystems, 2017, 156-157, 46-52.	0.9	13
103	On plant roots logical gates. BioSystems, 2017, 156-157, 40-45.	0.9	13
104	Cellular non-linear network model of microbial fuel cell. BioSystems, 2017, 156-157, 53-62.	0.9	13
105	Fredkin and Toffoli Gates Implemented in Oregonator Model of Belousov–Zhabotinsky Medium. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750041.	0.7	10
106	Physarum solver: a bio-inspired method for sustainable supply chain network design problem. Annals of Operations Research, 2017, 254, 533-552.	2.6	16
107	Logical gates in actin monomer. Scientific Reports, 2017, 7, 11755.	1.6	10
108	Physarum machines imitating a Roman road network: the 3D approach. Scientific Reports, 2017, 7, 7010.	1.6	14

#	Article	IF	CITATIONS
109	Computing in Verotoxin. ChemPhysChem, 2017, 18, 1822-1830.	1.0	9
110	East-West paths to unconventional computing. Progress in Biophysics and Molecular Biology, 2017, 131, 469-493.	1.4	14
111	Liquid marble interaction gate for collision-based computing. Materials Today, 2017, 20, 561-568.	8.3	35
112	Cellular Automaton Belousov–Zhabotinsky Model for Binary Full Adder. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750089.	0.7	18
113	Thirty Seven Things to Do with Live Slime Mould. Emergence, Complexity and Computation, 2017, , 709-738.	0.2	11
114	Calculating Voronoi Diagrams Using Chemical Reactions. Emergence, Complexity and Computation, 2017, , 167-198.	0.2	1
115	Light-Sensitive Belousov–Zhabotinsky Computing Through Simulated Evolution. Emergence, Complexity and Computation, 2017, , 199-212.	0.2	1
116	A Computation in a Cellular Automaton Collider Rule 110. Emergence, Complexity and Computation, 2017, , 391-428.	0.2	4
117	Models of Computing on Actin Filaments. Emergence, Complexity and Computation, 2017, , 309-346.	0.2	4
118	Uses and Potential: Summary of the Biomedical and Engineering Applications of Myxomycetes in the 21st Century. , 2017, , 365-387.		1
119	Physical Maze Solvers. All Twelve Prototypes Implement 1961 Lee Algorithm. Emergence, Complexity and Computation, 2017, , 489-504.	0.2	4
120	Towards implementation of cellular automata in Microbial Fuel Cells. PLoS ONE, 2017, 12, e0177528.	1.1	13
121	On the Dynamics of Excitation and Information Processing in F-actin: Automaton Model. Complex Systems, 2017, 26, 295-318.	0.9	3
122	Slime Mold Computing. , 2017, , 1-16.		1
123	Reaction-Diffusion Computing. , 2017, , 1-25.		0
124	Emergent Behaviors in a Bio-Inspired Platform Controlled by a Physical Cellular Automata Cluster. Biomimetics, 2016, 1, 5.	1.5	4
125	On Emulation of Flueric Devices in Excitable Chemical Medium. PLoS ONE, 2016, 11, e0168267.	1.1	7
126	On using compressibility to detect when slime mould completed computation. Complexity, 2016, 21, 162-175.	0.9	6

#	Article	IF	CITATIONS
127	Practical circuits with Physarum Wires. Biomedical Engineering Letters, 2016, 6, 57-65.	2.1	8
128	On hybrid circuits exploiting thermistive properties of slime mould. Scientific Reports, 2016, 6, 23924.	1.6	5
129	Quantum Actin Automata and Three-Valued Logics. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2016, 6, 53-61.	2.7	7
130	A Physarum-inspired approach to supply chain network design. Science China Information Sciences, 2016, 59, 1.	2.7	25
131	On hybridising lettuce seedlings with nanoparticles and the resultant effects on the organisms' electrical characteristics. BioSystems, 2016, 147, 28-34.	0.9	8
132	Towards a Physarum learning chip. Scientific Reports, 2016, 6, 19948.	1.6	20
133	Logical Gates Implemented by Solitons at the Junctions Between One-Dimensional Lattices. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650107.	0.7	14
134	On modulating the Physarum polycephalum plasmodium's electrical resistance, resting membrane potential and capacitance by application of nanoparticles and nanostructures. Organic Electronics, 2016, 32, 267-273.	1.4	4
135	Physarum in silicon: the Greek motorways study. Natural Computing, 2016, 15, 279-295.	1.8	22
136	Physarum Imitates Exploration and Colonisation of Planets. Emergence, Complexity and Computation, 2016, , 395-410.	0.2	0
137	Slime Mould Controller for Microbial Fuel Cells. Emergence, Complexity and Computation, 2016, , 285-298.	0.2	0
138	A Chemomodulatory Platform for Physarum polycephalum Incorporating Genetically Transformed Plant Root Cultures. Emergence, Complexity and Computation, 2016, , 195-210.	0.2	0
139	Cellular Automata Models Simulating Slime Mould Computing. Emergence, Complexity and Computation, 2016, , 563-594.	0.2	6
140	On the Memristive Properties of Slime Mould. Emergence, Complexity and Computation, 2016, , 75-90.	0.2	0
141	Living Wires — Effects of Size and Coating of Gold Nanoparticles in Altering the Electrical Properties ofPhysarum polycephalumand Lettuce Seedlings. Nano LIFE, 2016, 06, 1650001.	0.6	4
142	On chirality of slime mould. BioSystems, 2016, 140, 23-27.	0.9	11
143	Boolean gates on actin filaments. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 88-97.	0.9	29
144	Chemical Sensors and Information Fusion in Physarum. Emergence, Complexity and Computation, 2016, , 211-230.	0.2	1

#	Article	IF	CITATIONS
145	Logical Gates and Circuits Implemented in Slime Mould. Emergence, Complexity and Computation, 2016, , 37-74.	0.2	7
146	Translating Slime Mould Responses: A Novel Way to Present Data to the Public. Emergence, Complexity and Computation, 2016, , 777-788.	0.2	2
147	On Complexity of Persian Orthography: L-Systems Approach. Complex Systems, 2016, 25, 127-156.	0.9	8
148	Halting Physarum Machines Based onÂCompressibility. Emergence, Complexity and Computation, 2016, , 687-703.	0.2	0
149	Towards a Slime Mould-FPGA Interface. Emergence, Complexity and Computation, 2016, , 299-309.	0.2	0
150	Slime Mould Approximates Longest Roads in USA and Germany: Experiments on 3D Terrains. Emergence, Complexity and Computation, 2016, , 311-335.	0.2	0
151	Physarum Wires, Sensors and Oscillators. Emergence, Complexity and Computation, 2016, , 231-269.	0.2	0
152	Recolonisation of USA: Slime Mould on 3D Terrains. Emergence, Complexity and Computation, 2016, , 337-348.	0.2	1
153	Routing Physarum "Signals―with Chemicals. Emergence, Complexity and Computation, 2016, , 165-193.	0.2	1
154	Binary full adder, made of fusion gates, in a subexcitable Belousov-Zhabotinsky system. Physical Review E, 2015, 92, 032811.	0.8	8
155	A Biologically Inspired Network Design Model. Scientific Reports, 2015, 5, 10794.	1.6	23
156	Magnetic Nanoparticles-Loaded Physarum polycephalum: Directed Growth and Particles Distribution. Interdisciplinary Sciences, Computational Life Sciences, 2015, 7, 373-381.	2.2	4
157	Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum. Frontiers in Microbiology, 2015, 6, 720.	1.5	13
158	Conducting polymer-coated <i>Physarum polycephalum</i> towards the synthesis of bio-hybrid electronic devices. International Journal of General Systems, 2015, 44, 409-420.	1.2	3
159	Slime mould computing. International Journal of General Systems, 2015, 44, 277-278.	1.2	7
160	Slime mould foraging behaviour as optically coupled logical operations. International Journal of General Systems, 2015, 44, 305-313.	1.2	24
161	Actin quantum automata: Communication and computation in molecular networks. Nano Communication Networks, 2015, 6, 15-27.	1.6	30
162	On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum. Communicative and Integrative Biology, 2015, 8, e1059007.	0.6	21

#	Article	IF	CITATIONS
163	Computing with virtual cellular automata collider. , 2015, , .		2
164	Belousov–Zhabotinsky Reaction. , 2015, , 106-112.		1
165	Actin Automata: Phenomenology and Localizations. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550030.	0.7	18
166	Transfer function of protoplasmic tubes of Physarum polycephalum. BioSystems, 2015, 128, 48-51.	0.9	25
167	Slime Mould Memristors. BioNanoScience, 2015, 5, 1-8.	1.5	56
168	Quantitative transformation for implementation of adder circuits in physical systems. BioSystems, 2015, 134, 16-23.	0.9	12
169	Slime mould processors, logic gates and sensors. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140216.	1.6	20
170	On Growing Persian Words with L-Systems: Visual Modeling of Neyname. International Journal of Image and Graphics, 2015, 15, 1550011.	1.2	5
171	A Would-Be Nervous System Made from a Slime Mold. Artificial Life, 2015, 21, 73-91.	1.0	13
172	On Binary-State Phyllosilicate Automata. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550035.	0.7	0
173	On the Dynamics of Cellular Automata with Memory. Fundamenta Informaticae, 2015, 138, 1-16.	0.3	2
174	Slime mould imitates development of Roman roads in the Balkans. Journal of Archaeological Science: Reports, 2015, 2, 264-281.	0.2	14
175	Towards a slime Mould-FPGA interface. Biomedical Engineering Letters, 2015, 5, 51-57.	2.1	19
176	On exploration of geometrically constrained space by medicinal leeches Hirudo verbana. BioSystems, 2015, 130, 28-36.	0.9	4
177	The double-slit experiment with <i>Physarum polycephalum</i> and <i>p</i> -adic valued probabilities and fuzziness. International Journal of General Systems, 2015, 44, 392-408.	1.2	20
178	Preface of the "1st international symposium on artificial, biological and bio-inspired intelligence (ABBII)― AIP Conference Proceedings, 2015, , .	0.3	0
179	The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors. Materials Chemistry and Physics, 2015, 162, 20-30.	2.0	34
180	Building exploration with leeches Hirudo verbana. BioSystems, 2015, 134, 48-55.	0.9	1

#	Article	IF	CITATIONS
181	Toward Hybrid Nanostructure-Slime Mould Devices. Nano LIFE, 2015, 05, 1450007.	0.6	21
182	Physarum polycephalum: Towards a biological controller. BioSystems, 2015, 127, 42-46.	0.9	7
183	On the Computing Potential of Intracellular Vesicles. PLoS ONE, 2015, 10, e0139617.	1.1	17
184	An ImprovedPhysarum polycephalumAlgorithm for the Shortest Path Problem. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	7
185	Unconventional computing. International Journal of General Systems, 2014, 43, 671-672.	1.2	9
186	Development and initial testing of a novel slime mould biosensor. , 2014, 2014, 4042-5.		3
187	Material approximation of data smoothing and spline curves inspired by slime mould. Bioinspiration and Biomimetics, 2014, 9, 036016.	1.5	18
188	Classifying elementary cellular automata using compressibility, diversity and sensitivity measures. International Journal of Modern Physics C, 2014, 25, 1350098.	0.8	10
189	A Bio-Inspired Algorithm for Route Selection in Wireless Sensor Networks. IEEE Communications Letters, 2014, 18, 2019-2022.	2.5	11
190	On logical universality of Belousov-Zhabotinsky vesicles. International Journal of General Systems, 2014, 43, 757-769.	1.2	6
191	Emergent spiking in non-ideal memristor networks. Microelectronics Journal, 2014, 45, 1401-1415.	1.1	18
192	A bio-inspired algorithm for identification of critical components in the transportation networks. Applied Mathematics and Computation, 2014, 248, 18-27.	1.4	15
193	How β-skeletons lose their edges. Information Sciences, 2014, 254, 213-224.	4.0	1
194	Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum. Sensors and Actuators B: Chemical, 2014, 191, 844-853.	4.0	58
195	Sensory fusion in Physarum polycephalum and implementing multi-sensory functional computation. BioSystems, 2014, 119, 45-52.	0.9	21
196	Slime mold microfluidic logical gates. Materials Today, 2014, 17, 86-91.	8.3	73
197	Computation of the travelling salesman problem by a shrinking blob. Natural Computing, 2014, 13, 1-16.	1.8	73
198	Drop-coated titanium dioxide memristors. Materials Chemistry and Physics, 2014, 143, 524-529.	2.0	51

#	Article	IF	CITATIONS
199	Tactile Bristle Sensors Made With Slime Mold. IEEE Sensors Journal, 2014, 14, 324-332.	2.4	24
200	Evolving Spiking Networks with Variable Resistive Memories. Evolutionary Computation, 2014, 22, 79-103.	2.3	24
201	Slime mould logic gates based on frequency changes of electrical potential oscillation. BioSystems, 2014, 124, 21-25.	0.9	34
202	Phase Transition in Elementary Cellular Automata with Memory. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1450116.	0.7	5
203	Towards plant wires. BioSystems, 2014, 122, 1-6.	0.9	13
204	Rapid Physarum Algorithm for shortest path problem. Applied Soft Computing Journal, 2014, 23, 19-26.	4.1	30
205	Information coding with frequency of oscillations in Belousov-Zhabotinsky encapsulated disks. Physical Review E, 2014, 89, 042910.	0.8	36
206	A Biologically Inspired Optimization Algorithm for Solving Fuzzy Shortest Path Problems with Mixed Fuzzy Arc Lengths. Journal of Optimization Theory and Applications, 2014, 163, 1049-1056.	0.8	23
207	Slime mould electronic oscillators. Microelectronic Engineering, 2014, 124, 58-65.	1.1	25
208	UAV Horizon Tracking Using Memristors and Cellular Automata Visual Processing. Lecture Notes in Computer Science, 2014, , 64-75.	1.0	4
209	Trans-Canada Slimeways. , 2014, , 251-265.		1
210	Slime mould tactile sensor. Sensors and Actuators B: Chemical, 2013, 188, 38-44.	4.0	57
211	On Delaunay triangulation automata with memory. Nano Communication Networks, 2013, 4, 216-228.	1.6	2
212	A SPICE MODEL OF THE PEO-PANI MEMRISTOR. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350112.	0.7	7
213	Physarum wires: Self-growing self-repairing smart wires made from slime mould. Biomedical Engineering Letters, 2013, 3, 232-241.	2.1	33
214	Is spiking logic the route to memristor-based computers?. , 2013, , .		8
215	Collision-based computing implemented by soldier crab swarms. International Journal of Parallel, Emergent and Distributed Systems, 2013, 28, 67-74.	0.7	9
216	On growing connected Î ² -skeletons. Computational Geometry: Theory and Applications, 2013, 46, 805-816.	0.3	6

#	Article	IF	CITATIONS
217	Bio-Imitation of Mexican Migration Routes to the USA with Slime Mould on 3D Terrains. Journal of Bionic Engineering, 2013, 10, 242-250.	2.7	20
218	Biological evaluation of Trans-African highways. European Physical Journal: Special Topics, 2013, 215, 49-59.	1.2	7
219	EXPRESSIVENESS OF ELEMENTARY CELLULAR AUTOMATA. International Journal of Modern Physics C, 2013, 24, 1350010.	0.8	7
220	Game of life on phyllosilicates: Gliders, oscillators and still life. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1597-1605.	0.9	6
221	Toward Turing's A-Type Unorganised Machines in an Unconventional Substrate: A Dynamic Representation in Compartmentalised Excitable Chemical Media. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2013, , 185-199.	0.2	2
222	Towards slime mould colour sensor: Recognition of colours by Physarum polycephalum. Organic Electronics, 2013, 14, 3355-3361.	1.4	57
223	Assessing the chemotaxis behavior of <i><i>Physarum polycephalum</i></i> to a range of simple volatile organic chemicals. Communicative and Integrative Biology, 2013, 6, e25030.	0.6	37
224	Boolean Logic Gates from a Single Memristor via Low-Level Sequential Logic. Lecture Notes in Computer Science, 2013, , 79-89.	1.0	23
225	Are motorways rational from slime mould's point of view?. International Journal of Parallel, Emergent and Distributed Systems, 2013, 28, 230-248.	0.7	24
226	Slimeware: Engineering Devices with Slime Mold. Artificial Life, 2013, 19, 317-330.	1.0	11
227	DESIGNING COMPLEX DYNAMICS IN CELLULAR AUTOMATA WITH MEMORY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1330035.	0.7	16
228	Evolving gene regulatory networks with mobile DNA mechanisms. , 2013, , .		0
229	ON OSCILLATORS IN PHYLLOSILICATE EXCITABLE AUTOMATA. International Journal of Modern Physics C, 2013, 24, 1350034.	0.8	3
230	BIO-DEVELOPMENT OF MOTORWAY NETWORK IN THE NETHERLANDS: A SLIME MOULD APPROACH. International Journal of Modeling, Simulation, and Scientific Computing, 2013, 16, 1250034.	0.9	18
231	On creativity of slime mould. International Journal of General Systems, 2013, 42, 441-457.	1.2	20
232	Slime mould imitates transport networks in China. International Journal of Intelligent Computing and Cybernetics, 2013, 6, 232-251.	1.6	16
233	Observation, Characterization and Modeling of Memristor Current Spikes. Applied Mathematics and Information Sciences, 2013, 7, 1395-1403.	0.7	27
234	Probabilistic Real Swarm Logical Gate. Springer Proceedings in Complexity, 2013, , 271-278.	0.2	0

#	Article	IF	CITATIONS
235	Schlauschleimer in Reichsautobahnen. Kybernetes, 2012, 41, 1050-1071.	1.2	9
236	Physarum attraction: Why slime mold behaves as cats do?. Communicative and Integrative Biology, 2012, 5, 297-299.	0.6	12
237	Time-dependent wave selection for information processing in excitable media. Physical Review E, 2012, 85, 066129.	0.8	26
238	Collision-Based Computing. , 2012, , 1949-1978.		11
239	PHENOMENOLOGY OF RETAINED REFRACTORINESS: ON SEMI-MEMRISTIVE DISCRETE MEDIA. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1230036.	0.7	9
240	THE WORLD'S COLONIZATION AND TRADE ROUTES FORMATION AS IMITATED BY SLIME MOULD. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1230028.	0.7	10
241	COMPLEX DYNAMICS OF ELEMENTARY CELLULAR AUTOMATA EMERGING FROM CHAOTIC RULES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250023.	0.7	26
242	Emergence of self-organized amoeboid movement in a multi-agent approximation of Physarum polycephalum. Bioinspiration and Biomimetics, 2012, 7, 016009.	1.5	15
243	ON DIVERSITY OF CONFIGURATIONS GENERATED BY EXCITABLE CELLULAR AUTOMATA WITH DYNAMICAL EXCITATION INTERVALS. International Journal of Modern Physics C, 2012, 23, 1250085.	0.8	6
244	Malaysian expressways: is there a logic behind them?. , 2012, , 177-194.		2
245	Slime mould computes planar shapes. International Journal of Bio-Inspired Computation, 2012, 4, 149.	0.6	24
246	Slime Mold Solves Maze in One Pass, Assisted by Gradient of Chemo-Attractants. IEEE Transactions on Nanobioscience, 2012, 11, 131-134.	2.2	92
247	Memristor-based information gathering approaches, both ant-inspired and hypothetical. Nano Communication Networks, 2012, 3, 203-216.	1.6	7
248	Manipulating objects with gliders in cellular automata. , 2012, , .		4
249	ORGANIC MEMRISTOR DEVICES FOR LOGIC ELEMENTS WITH MEMORY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250283.	0.7	43
250	Slime mould evaluation of Australian motorways. International Journal of Parallel, Emergent and Distributed Systems, 2012, 27, 275-295.	0.7	24
251	On architectures of circuits implemented in simulated Belousov–Zhabotinsky droplets. BioSystems, 2012, 109, 72-77.	0.9	29

252 Computing on Rings. , 2012, , 257-276.

#	Article	IF	CITATIONS
253	Towards <i>Physarum</i> Engines. Applied Bionics and Biomechanics, 2012, 9, 221-240.	0.5	7
254	Simulating strange attraction of acellular slime mould Physarum polycephaum to herbal tablets. Mathematical and Computer Modelling, 2012, 55, 884-900.	2.0	9
255	Reaction-Diffusion Computing. , 2012, , 2594-2610.		3
256	Reaction–Diffusion Computing. , 2012, , 1897-1920.		6
257	Bioevaluation of World Transport Networks. , 2012, , .		42
258	Slime Mold Imitates the United States Interstate System. Complex Systems, 2012, 21, 1-21.	0.9	6
259	On the Internalisation, Intraplasmodial Carriage and Excretion of Metallic Nanoparticles in the Slime Mould, Physarum Polycephalum. International Journal of Nanotechnology and Molecular Computation, 2011, 3, 1-14.	0.3	16
260	On attraction of slime mould Physarum polycephalum to plants with sedative properties. Nature Precedings, 2011, , .	0.1	11
261	Excitable Delaunay triangulations. Kybernetes, 2011, 40, 719-735.	1.2	5
262	On computing in fine-grained compartmentalised Belousov–Zhabotinsky medium. Chaos, Solitons and Fractals, 2011, 44, 779-790.	2.5	24
263	Towards Arithmetic Circuits in Subâ€Excitable Chemical Media. Israel Journal of Chemistry, 2011, 51, 56-66.	1.0	36
264	Approximating Mexican highways with slime mould. Natural Computing, 2011, 10, 1195-1214.	1.8	54
265	Computational modalities of Belousov–Zhabotinsky encapsulated vesicles. Nano Communication Networks, 2011, 2, 50-61.	1.6	30
266	Sounds synthesis with slime mould of Physarum Polycephalum. Journal of Bionic Engineering, 2011, 8, 107-113.	2.7	22
267	Vesicle computers: Approximating a Voronoi diagram using Voronoi automata. Chaos, Solitons and Fractals, 2011, 44, 480-489.	2.5	10
268	Rebuilding Iberian motorways with slime mould. BioSystems, 2011, 105, 89-100.	0.9	36
269	On beta-skeleton automata with memory. Journal of Computational Science, 2011, 2, 57-66.	1.5	8
270	Skeletonization by crystallization. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 505-510.	0.9	3

#	Article	IF	CITATIONS
271	Topics in Reaction-Diffusion Computers. Journal of Computational and Theoretical Nanoscience, 2011, 8, 295-303.	0.4	13
272	Computing with liquid crystal fingers: Models of geometric and logical computation. Physical Review E, 2011, 84, 061702.	0.8	5
273	Logical and arithmetic circuits in Belousov-Zhabotinsky encapsulated disks. Physical Review E, 2011, 84, 056110.	0.8	41
274	ON ELECTRICAL CORRELATES OF <i>PHYSARUM POLYCEPHALUM</i> SPATIAL ACTIVITY: CAN WE SEE PHYSARUM MACHINE IN THE DARK?. Biophysical Reviews and Letters, 2011, 06, 29-57.	0.9	40
275	MEMRISTIVE EXCITABLE CELLULAR AUTOMATA. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 3083-3102.	0.7	14
276	CELLULAR AUTOMATON SUPERCOLLIDERS. International Journal of Modern Physics C, 2011, 22, 419-439.	0.8	24
277	ON POLYMORPHIC LOGICAL GATES IN SUBEXCITABLE CHEMICAL MEDIUM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 1977-1986.	0.7	25
278	Brazilian highways from slime mold's point of view. Kybernetes, 2011, 40, 1373-1394.	1.2	21
279	Robust Soldier Crab Ball Gate. Complex Systems, 2011, 20, 93-104.	0.9	17
280	Trans-Canada Slimeways. International Journal of Natural Computing Research, 2011, 2, 31-46.	0.5	20
281	Routing Physarum with Electrical Flow/Current. International Journal of Nanotechnology and Molecular Computation, 2011, 3, 56-70.	0.3	12
282	Sequential Voronoi Diagram Calculations using Simple Chemical Reactions. International Journal of Nanotechnology and Molecular Computation, 2011, 3, 29-41.	0.3	0
283	On generative morphological diversity of elementary cellular automata. Kybernetes, 2010, 39, 72-82.	1.2	13
284	Routing Physarum with repellents. European Physical Journal E, 2010, 31, 403-410.	0.7	28
285	Stochastic automated search methods in cellular automata: the discovery of tens of thousands of glider guns. Natural Computing, 2010, 9, 513-543.	1.8	5
286	Programmable reconfiguration of Physarum machines. Natural Computing, 2010, 9, 219-237.	1.8	24
287	How to make dull cellular automata complex by adding memory: Rule 126 case study. Complexity, 2010, 15, 34-49.	0.9	4
288	Operating binary strings using gliders and eaters in reaction-diffusion cellular automaton. Mathematical and Computer Modelling, 2010, 52, 177-190.	2.0	7

#	Article	IF	CITATIONS
289	On excitable Î ² -skeletons. Journal of Computational Science, 2010, 1, 175-186.	1.5	5
290	Manipulating substances with Physarum polycephalum. Materials Science and Engineering C, 2010, 30, 1211-1220.	3.8	23
291	Towards Physarum binary adders. BioSystems, 2010, 101, 51-58.	0.9	32
292	Aromatic arithmetic. Nature Physics, 2010, 6, 325-326.	6.5	7
293	Physarum Boats: If Plasmodium Sailed It Would Never Leave a Port. Applied Bionics and Biomechanics, 2010, 7, 31-39.	0.5	3
294	CHEMICAL TESSELLATIONS — RESULTS OF BINARY AND TERTIARY REACTIONS BETWEEN METAL IONS AND FERRICYANIDE OR FERROCYANIDE LOADED GELS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 2241-2252.	0.7	5
295	ROAD PLANNING WITH SLIME MOULD: IF <i>PHYSARUM</i> BUILT MOTORWAYS IT WOULD ROUTE M6/M74 THROUGH NEWCASTLE. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 3065-3084.	0.7	85
296	Localization Dynamics in a Binary Two-Dimensional Cellular Automaton: TheÂDiffusion Rule. , 2010, , 291-315.		6
297	Computation with Competing Patterns inÂLife-Like Automaton. , 2010, , 547-572.		9
298	Majority Adder Implementation by Competing Patterns in Life-Like Rule B2/S2345. Lecture Notes in Computer Science, 2010, , 93-104.	1.0	3
299	Simple Collision-Based Chemical Logic Gates with Adaptive Computing. International Journal of Nanotechnology and Molecular Computation, 2009, 1, 1-16.	0.3	14
300	Implementation of glider guns in the light-sensitive Belousov-Zhabotinsky medium. Physical Review E, 2009, 79, 026114.	0.8	39
301	DEVELOPING PROXIMITY GRAPHS BY <i>PHYSARUM POLYCEPHALUM</i> : DOES THE PLASMODIUM FOLLOW THE TOUSSAINT HIERARCHY?. Parallel Processing Letters, 2009, 19, 105-127.	0.4	101
302	ON SIMULTANEOUS CONSTRUCTION OF VORONOI DIAGRAM AND DELAUNAY TRIANGULATION BY <i>PHYSARUM POLYCEPHALUM</i> . International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 3109-3117.	0.7	114
303	ON LOCALIZATIONS IN MINIMAL CELLULAR AUTOMATA MODEL OF TWO-SPECIES MUTUALISM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 2885-2897.	0.7	2
304	CHEMICAL TESSELLATIONS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 619-622.	0.7	9
305	Genetic approaches to search for computing patterns in cellular automata. IEEE Computational Intelligence Magazine, 2009, 4, 20-28.	3.4	16

Are complex systems hard to evolve?. Complexity, 2009, 14, 15-20.

0.9 8

#	Article	IF	CITATIONS
307	If BZ medium did spanning trees these would be the same trees as Physarum built. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 952-956.	0.9	53
308	From reaction-diffusion to Physarum computing. Natural Computing, 2009, 8, 431-447.	1.8	16
309	The 2nd International Workshop on Natural Computing. New Generation Computing, 2009, 27, 83-84.	2.5	0
310	Hot ice computer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 374, 264-271.	0.9	46
311	Localizations in cellular automata with mutualistic excitation rules. Chaos, Solitons and Fractals, 2009, 40, 981-1003.	2.5	1
312	Collision-based implementation of a two-bit adder in excitable cellular automaton. Chaos, Solitons and Fractals, 2009, 41, 1191-1200.	2.5	15
313	Experimental validation of binary collisions between wave fragments in the photosensitive Belousov–Zhabotinsky reaction. Chaos, Solitons and Fractals, 2009, 41, 1605-1615.	2.5	39
314	Toward semantical model of reactionâ€diffusion computing. Kybernetes, 2009, 38, 1518-1531.	1.2	14
315	Complex Dynamics Emerging in Rule 30 with Majority Memory. Complex Systems, 2009, 18, 345-366.	0.9	22
316	Reaction–Diffusion Controllers for Robots. , 2009, , 233-264.		0
317	Towards Physarum Robots: Computing and Manipulating on Water Surface. Journal of Bionic Engineering, 2008, 5, 348-357.	2.7	40
318	On logical gates in precipitating medium: Cellular automaton model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5115-5119.	0.9	2
319	EVOLVING LOCALIZATIONS IN REACTION-DIFFUSION CELLULAR AUTOMATA. International Journal of Modern Physics C, 2008, 19, 557-567.	0.8	2
320	ON MEMORY AND STRUCTURAL DYNAMISM IN EXCITABLE CELLULAR AUTOMATA WITH DEFENSIVE INHIBITION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 527-539.	0.7	9
321	UNIVERSAL COMPUTATION WITH LIMITED RESOURCES: BELOUSOV–ZHABOTINSKY AND PHYSARUM COMPUTERS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 2373-2389.	0.7	63
322	Dynamic control and information processing in the Belousov–Zhabotinsky reaction using a coevolutionary algorithm. Journal of Chemical Physics, 2008, 129, 184708.	1.2	29
323	Towards Unconventional Computing through Simulated Evolution: Control of Nonlinear Media by a Learning Classifier System. Artificial Life, 2008, 14, 203-222.	1.0	13
324	Growing spanning trees in plasmodium machines. Kybernetes, 2008, 37, 258-264.	1.2	35

#	Article	IF	CITATIONS
325	On the Representation of Gliders in Rule 54 by De Bruijn and Cycle Diagrams. Lecture Notes in Computer Science, 2008, , 83-91.	1.0	6
326	Coevolving Cellular Automata with Memory for Chemical Computing: Boolean Logic Gates in the BZ Reaction. Lecture Notes in Computer Science, 2008, , 579-588.	1.0	7
327	PHYSARUM MACHINE: IMPLEMENTATION OF A KOLMOGOROV-USPENSKY MACHINE ON A BIOLOGICAL SUBSTRATE. Parallel Processing Letters, 2007, 17, 455-467.	0.4	91
328	Towards the coevolution of cellular automata controllers for chemical computing with the B-Z reaction. , 2007, , .		4
329	A Genetic approach to search for glider guns in cellular automata. , 2007, , .		2
330	PHENOMENOLOGY OF RETAINED EXCITATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 3985-4014.	0.7	4
331	Binary collisions between wave-fragments in a sub-excitable Belousov–Zhabotinsky medium. Chaos, Solitons and Fractals, 2007, 34, 307-315.	2.5	47
332	Physarum machines: encapsulating reaction–diffusion to compute spanning tree. Die Naturwissenschaften, 2007, 94, 975-980.	0.6	82
333	Glider-based computing in reaction-diffusion hexagonal cellular automata. Chaos, Solitons and Fractals, 2006, 27, 287-295.	2.5	41
334	Phenomenology of glider collisions in cellular automaton Rule 54 and associated logical gates. Chaos, Solitons and Fractals, 2006, 28, 100-111.	2.5	49
335	Manipulating objects with chemical waves: Open loop case of experimental Belousov–Zhabotinsky medium coupled with simulated actuator array. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 350, 201-209.	0.9	10
336	PHENOMENOLOGY OF REACTION–DIFFUSION BINARY-STATE CELLULAR AUTOMATA. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 2985-3005.	0.7	30
337	MANIPULATING PLANAR SHAPES WITH A LIGHT-SENSITIVE EXCITABLE MEDIUM: COMPUTATIONAL STUDIES OF CLOSED-LOOP SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 2333-2349.	0.7	4
338	ON SPIRAL GLIDER-GUNS IN HEXAGONAL CELLULAR AUTOMATA: ACTIVATOR-INHIBITOR PARADIGM. International Journal of Modern Physics C, 2006, 17, 1009-1026.	0.8	26
339	Nonâ€inear dynamics in affective solutions: analysis of massive collectives of emotional agents. Kybernetes, 2005, 34, 652-665.	1.2	3
340	Three-valued logic gates in reaction–diffusion excitable media. Chaos, Solitons and Fractals, 2005, 24, 107-114.	2.5	44
341	Experimental implementation of collision-based gates in Belousov–Zhabotinsky medium. Chaos, Solitons and Fractals, 2005, 25, 535-544.	2.5	52
342	Manipulating objects by discrete excitable media coupled with contact-less actuator array: Open-loop case. Chaos, Solitons and Fractals, 2005, 26, 1377-1389.	2.5	6

#	Article	IF	CITATIONS
343	SILICON IMPLEMENTATION OF A CHEMICAL REACTION–DIFFUSION PROCESSOR FOR COMPUTATION OF VORONOI DIAGRAM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 3307-3320.	0.7	19
344	Journeys in non-classical computation I: A grand challenge for computing research. International Journal of Parallel, Emergent and Distributed Systems, 2005, 20, 5-19.	0.7	54
345	Programming Reaction-Diffusion Processors. Lecture Notes in Computer Science, 2005, , 33-46.	1.0	5
346	Three-valued logic gates in reaction–diffusion excitable media. Chaos, Solitons and Fractals, 2005, 24, 107-114.	2.5	13
347	THE FORMATION OF VORONOI DIAGRAMS IN CHEMICAL AND PHYSICAL SYSTEMS: EXPERIMENTAL FINDINGS AND THEORETICAL MODELS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2004, 14, 2187-2210.	0.7	48
348	Experimental implementation of mobile robot taxis with onboard Belousov–Zhabotinsky chemical medium. Materials Science and Engineering C, 2004, 24, 541-548.	3.8	42
349	Towards reaction–diffusion computing devices based on minority-carrier transport in semiconductors. Chaos, Solitons and Fractals, 2004, 20, 863-876.	2.5	20
350	Collision-based computing in Belousov–Zhabotinsky medium. Chaos, Solitons and Fractals, 2004, 21, 1259-1264.	2.5	84
351	Reaction-Diffusion Navigation Robot Control: From Chemical to VLSI Analogic Processors. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2004, 51, 926-938.	0.1	80
352	Experimental Reaction–Diffusion Chemical Processors for Robot Path Planning. Journal of Intelligent and Robotic Systems: Theory and Applications, 2003, 37, 233-249.	2.0	41
353	Reaction–diffusion path planning in a hybrid chemical and cellular-automaton processor. Chaos, Solitons and Fractals, 2003, 16, 727-736.	2.5	37
354	On dynamically non-trivial three-valued logics: oscillatory and bifurcatory species. Chaos, Solitons and Fractals, 2003, 18, 917-936.	2.5	35
355	Affectons: automata models of emotional interactions. Applied Mathematics and Computation, 2003, 146, 579-594.	1.4	11
356	On some limitations of reaction–diffusion chemical computers in relation to Voronoi diagram and its inversion. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 309, 397-406.	0.9	37
357	ON PATTERNS IN AFFECTIVE MEDIA. International Journal of Modern Physics C, 2003, 14, 673-687.	0.8	11
358	Reactionâ€diffusion and antâ€based load balancing of communication networks. Kybernetes, 2002, 31, 667-681.	1.2	12
359	Collision-free path planning in the Belousov-Zhabotinsky medium assisted by a cellular automaton. Die Naturwissenschaften, 2002, 89, 474-478.	0.6	48
360	Phototaxis of mobile excitable lattices. Chaos, Solitons and Fractals, 2002, 13, 171-184.	2.5	11

#	Article	IF	CITATIONS
361	Experimental reaction–diffusion pre-processor for shape recognition. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 297, 344-352.	0.9	50
362	Experimental logical gates in a reaction-diffusion medium: The XOR gate and beyond. Physical Review E, 2002, 66, 046112.	0.8	90
363	Biologically inspired robots. , 2001, , .		8
364	Pathology of collective doxa. Automata models. Applied Mathematics and Computation, 2001, 122, 195-228.	1.4	8
365	Space-time dynamic of normalized doxatons: automata models of pathological collective mentality. Chaos, Solitons and Fractals, 2001, 12, 1629-1656.	2.5	6
366	Chemistry of belief. Kybernetes, 2001, 30, 1199-1208.	1.2	5
367	CHOOSEY HOT SAND: REFLECTION OF GRAIN SENSITIVITY ON PATTERN MORPHOLOGY. International Journal of Modern Physics C, 2000, 11, 47-68.	0.8	6
368	Constructions in swarms. Kybernetes, 2000, 29, 1184-1194.	1.2	3
369	Parallel controllers for decentralized robots: towards nano design. Kybernetes, 2000, 29, 733-745.	1.2	2
370	COLLISION-BASED COMPUTING IN BIOPOLYMERS AND THEIR AUTOMATA MODELS. International Journal of Modern Physics C, 2000, 11, 1321-1346.	0.8	13
371	Morphology of patterns of lattice swarms: Interval parameterization. Mathematical and Computer Modelling, 1999, 30, 35-59.	2.0	4
372	Nonconstructible blocks in 1D cellular automata: minimal generators and natural systems. Applied Mathematics and Computation, 1999, 99, 77-91.	1.4	6
373	Universal Dynamical Computation in Multidimensional Excitable Lattices. International Journal of Theoretical Physics, 1998, 37, 3069-3108.	0.5	47
374	Master-slave algebra: On the binary compositions of distributed beliefs. Applied Mathematics and Computation, 1998, 95, 173-180.	1.4	5
375	Phenomenology of excitation in 2-D cellular automata and swarm systems. Chaos, Solitons and Fractals, 1998, 9, 1233-1265.	2.5	31
376	Voronoi-like nondeterministic partition of a lattice by collectives of finite automata. Mathematical and Computer Modelling, 1998, 28, 73-93.	2.0	9
377	Cellular automaton labyrinths and solution finding. Computers and Graphics, 1997, 21, 519-522.	1.4	4
378	How cellular automaton plays Minesweeper. Applied Mathematics and Computation, 1997, 85, 127-137.	1.4	11

#	Article	IF	CITATIONS
379	Chemical Processor for Computation of Skeleton of Planar Shape. Advanced Materials for Optics and Electronics, 1997, 7, 135-139.	0.5	33
380	Chemical processor for computation of voronoi diagram. Advanced Materials for Optics and Electronics, 1996, 6, 191-196.	0.5	55
381	Simulation of inflorescence growth in cellular automata. Chaos, Solitons and Fractals, 1996, 7, 1065-1094.	2.5	4
382	Nonlinear cyclic pattern generation using an excitable chemical medium controller for a robotic hand. , 0, , .		1
383	Towards Predicting Spatial Complexity: A Learning Classifier System Approach to the Identification of Cellular Automata. , 0, , .		4
384	Algorithms of Reaction–Diffusion Computing. , 0, , 147-175.		0
385	Simple Collision-Based Chemical Logic Gates with Adaptive Computing. , 0, , 162-175.		8
386	Towards Arithmetical Chips in Sub-Excitable Media. , 0, , 223-238.		0