
Scott S H Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/769406/publications.pdf Version: 2024-02-01

SCOTT S H TSAL

#	Article	IF	CITATIONS
1	Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. Journal Physics D: Applied Physics, 2013, 46, 114002.	2.8	296
2	Detection of trace arsenic in drinking water: challenges and opportunities for microfluidics. Environmental Science: Water Research and Technology, 2015, 1, 426-447.	2.4	112
3	Water-in-Water Droplets by Passive Microfluidic Flow Focusing. Analytical Chemistry, 2016, 88, 3982-3989.	6.5	99
4	Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures. Lab on A Chip, 2015, 15, 2437-2444.	6.0	86
5	Oneâ€5tep Twoâ€Dimensional Microfluidicsâ€Based Synthesis of Threeâ€Dimensional Particles. Advanced Materials, 2014, 26, 1393-1398.	21.0	54
6	Conformal coating of particles in microchannels by magnetic forcing. Applied Physics Letters, 2011, 99,	3.3	51
7	Microfluidic Generation of Allâ€Aqueous Double and Triple Emulsions. Small, 2020, 16, e1906565.	10.0	49
8	Microfluidic diamagnetic water-in-water droplets: a biocompatible cell encapsulation and manipulation platform. Lab on A Chip, 2018, 18, 3361-3370.	6.0	43
9	Microfluidic ultralow interfacial tensiometry with magnetic particles. Lab on A Chip, 2013, 13, 119-125.	6.0	38
10	Shrinking, growing, and bursting: microfluidic equilibrium control of water-in-water droplets. Lab on A Chip, 2016, 16, 2601-2608.	6.0	35
11	Microfluidic immunomagnetic multi-target sorting – a model for controlling deflection of paramagnetic beads. Lab on A Chip, 2011, 11, 2577.	6.0	34
12	Materials and methods for droplet microfluidic device fabrication. Lab on A Chip, 2022, 22, 859-875.	6.0	32
13	Stable microfluidic flow focusing using hydrostatics. Biomicrofluidics, 2017, 11, 034104.	2.4	30
14	Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis. Scientific Reports, 2019, 9, 1585.	3.3	30
15	Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation. Journal of Colloid and Interface Science, 2019, 553, 382-389.	9.4	27
16	Controlled Electrospray Generation of Nonspherical Alginate Microparticles. ChemPhysChem, 2018, 19, 2113-2118.	2.1	23
17	Microfluidic conformal coating of non-spherical magnetic particles. Biomicrofluidics, 2014, 8, 052103.	2.4	21
18	Microfluidic Generation of Monodisperse Nanobubbles by Selective Gas Dissolution. Small, 2021, 17, e2100345.	10.0	20

SCOTT S H TSAI

#	Article	lF	CITATIONS
19	Rotary polymer micromachines: in situ fabrication of microgear components in microchannels. Microfluidics and Nanofluidics, 2015, 19, 67-74.	2.2	18
20	Sizing biological cells using a microfluidic acoustic flow cytometer. Scientific Reports, 2019, 9, 4775.	3.3	18
21	Biomedical nanobubbles and opportunities for microfluidics. RSC Advances, 2021, 11, 32750-32774.	3.6	18
22	Microfluidic Generation of Particle-Stabilized Water-in-Water Emulsions. Langmuir, 2018, 34, 213-218.	3.5	17
23	Dosage-controlled intracellular delivery mediated by acoustofluidics for lab on a chip applications. Lab on A Chip, 2021, 21, 1788-1797.	6.0	17
24	Microfluidic magnetic self-assembly at liquid–liquid interfaces. Soft Matter, 2016, 12, 2668-2675.	2.7	16
25	Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment. Soft Matter, 2013, 9, 8600.	2.7	15
26	Controlled generation of spiky microparticles by ionic cross-linking within an aqueous two-phase system. Soft Matter, 2019, 15, 3301-3306.	2.7	15
27	Ultrasound and Microbubbles for Targeted Drug Delivery to the Lung Endothelium in ARDS: Cellular Mechanisms and Therapeutic Opportunities. Biomedicines, 2021, 9, 803.	3.2	15
28	Electric field induced sheeting and breakup of dielectric liquid jets. Physics of Fluids, 2014, 26, .	4.0	14
29	Honey, I shrunk the bubbles: microfluidic vacuum shrinkage of lipid-stabilized microbubbles. Soft Matter, 2017, 13, 4011-4016.	2.7	14
30	Diamagnetic droplet microfluidics applied to single-cell sorting. AIP Advances, 2019, 9, .	1.3	14
31	Magnetic polyelectrolyte microcapsules <i>via</i> water-in-water droplet microfluidics. Lab on A Chip, 2020, 20, 2851-2860.	6.0	14
32	Floating and sinking of self-assembled spheres on liquid-liquid interfaces: Rafts versus stacks. Physics of Fluids, 2015, 27, .	4.0	13
33	Dancing with the Cells: Acoustic Microflows Generated by Oscillating Cells. Small, 2020, 16, 1903788.	10.0	12
34	Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes. Soft Matter, 2017, 13, 8796-8806.	2.7	10
35	Inertial particle separation in helical channels: A calibrated numerical analysis. AIP Advances, 2020, 10,	1.3	10
36	Expansion-mediated breakup of bubbles and droplets in microfluidics. Physical Review Fluids, 2020, 5, .	2.5	10

SCOTT S H TSAI

#	Article	IF	CITATIONS
37	Evaporation-Driven Water-in-Water Droplet Formation. Langmuir, 2020, 36, 14333-14341.	3.5	9
38	Classification of biological cells using a sound wave based flow cytometer. Proceedings of SPIE, 2016, , .	0.8	7
39	A novel abrasive water jet machining technique for rapid fabrication of three-dimensional microfluidic components. Biomicrofluidics, 2020, 14, 044103.	2.4	4
40	Magnetic water-in-water droplet microfluidics: Systematic experiments and scaling mathematical analysis. Biomicrofluidics, 2020, 14, 024101.	2.4	3
41	Lab on a rod: Size-based particle separation and sorting in a helical channel. Biomicrofluidics, 2020, 14, 064104.	2.4	2
42	Phase transition modulation and biophysical characterization of biomolecular condensates using microfluidics. Lab on A Chip, 0, , .	6.0	2
43	An ultrafast enzyme-free acoustic technique for detaching adhered cells in microchannels. RSC Advances, 2021, 11, 32824-32829.	3.6	1
44	Acoustic Microflows: Dancing with the Cells: Acoustic Microflows Generated by Oscillating Cells (Small 9/2020). Small, 2020, 16, 2070045.	10.0	0
45	Individual nanobubbles detection using acoustic based flow cytometry. , 2019, , .		0