Minghui Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7693949/publications.pdf

Version: 2024-02-01

154 6,020 43 papers citations h-index

154 154 154 6925
all docs docs citations times ranked citing authors

69

g-index

#	Article	IF	CITATIONS
1	A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. Npj Computational Materials, 2019, 5, .	8.7	480
2	Zirconium nitride catalysts surpass platinum for oxygen reduction. Nature Materials, 2020, 19, 282-286.	27.5	293
3	An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sensors and Actuators B: Chemical, 2019, 290, 59-67.	7.8	172
4	Designed formation through a metal organic framework route of ZnO/ZnCo ₂ O ₄ hollow core–shell nanocages with enhanced gas sensing properties. Nanoscale, 2016, 8, 16349-16356.	5. 6	152
5	Conductive Holey MoO ₂ –Mo ₃ N ₂ Heterojunctions as Job-Synergistic Cathode Host with Low Surface Area for High-Loading Li–S Batteries. ACS Nano, 2019, 13, 10049-10061.	14.6	150
6	Nickelâ€Based Transition Metal Nitride Electrocatalysts for the Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 3941-3954.	6.8	150
7	In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. Journal of Materials Chemistry A, 2017, 5, 6164-6169.	10.3	149
8	Sandwichâ€like Catalyst–Carbon–Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2020, 59, 12129-12138.	13.8	130
9	Oxygen Reduction Reactions of Fe-N-C Catalysts: Current Status and the Way Forward. Electrochemical Energy Reviews, 2019, 2, 252-276.	25.5	119
10	Synthesis and application of nano-structured metal nitrides and carbides: A review. Progress in Solid State Chemistry, 2018, 50, 1-15.	7.2	104
11	A review on nickel cobalt sulphide and their hybrids: Earth abundant, pH stable electro-catalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 24518-24543.	7.1	100
12	Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites. Journal of Materials Chemistry A, 2018, 6, 12091-12097.	10.3	88
13	Sandwich-like composites of double-layer Co3O4 and reduced graphene oxide and their sensing properties to volatile organic compounds. Journal of Alloys and Compounds, 2019, 793, 24-30.	5.5	87
14	ZnO-Reduced Graphene Oxide Composites Sensitized with Graphitic Carbon Nitride Nanosheets for Ethanol Sensing. ACS Applied Nano Materials, 2019, 2, 2734-2742.	5.0	84
15	Mesoporous Chromium Nitride as High Performance Catalyst Support for Methanol Electrooxidation. Chemistry of Materials, 2013, 25, 1783-1787.	6.7	82
16	Oxygen-Defective Ultrathin BiVO ₄ Nanosheets for Enhanced Gas Sensing. ACS Applied Materials & Sensing. ACS Applied Materi	8.0	81
17	Recent Advances in Transition Metal Nitrideâ€Based Materials for Photocatalytic Applications. Advanced Functional Materials, 2021, 31, 2100553.	14.9	80
18	A Surfaceâ€Oxideâ€Rich Activation Layer (SOAL) on Ni ₂ Mo ₃ N for a Rapid and Durable Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 18036-18041.	13.8	77

#	Article	IF	Citations
19	Hierarchical N-Doped Porous Carbons for Zn–Air Batteries and Supercapacitors. Nano-Micro Letters, 2020, 12, 20.	27.0	73
20	Mesoporous titanium nitride supported Pt nanoparticles as high performance catalysts for methanol electrooxidation. Physical Chemistry Chemical Physics, 2013, 15, 1088-1092.	2.8	70
21	Self-sacrificing templated formation of Co3O4/ZnCo2O4 composite hollow nanostructures for highly sensitive detecting acetone vapor. Sensors and Actuators B: Chemical, 2018, 273, 1202-1210.	7.8	69
22	High performance acetone sensor based on ZnO nanorods modified by Au nanoparticles. Journal of Alloys and Compounds, 2019, 797, 246-252.	5.5	67
23	Surface Functionalized Sensors for Humidityâ€Independent Gas Detection. Angewandte Chemie - International Edition, 2021, 60, 6561-6566.	13.8	66
24	Coordination Polymer-Derived Multishelled Mixed Ni–Co Oxide Microspheres for Robust and Selective Detection of Xylene. ACS Applied Materials & Selective Detection of Xylene.	8.0	64
25	Self-template derived ZnFe2O4 double-shell microspheres for chemresistive gas sensing. Sensors and Actuators B: Chemical, 2018, 265, 625-631.	7.8	64
26	Edge-sited Fe-N4 atomic species improve oxygen reduction activity via boosting O2 dissociation. Applied Catalysis B: Environmental, 2020, 265, 118593.	20.2	63
27	Mesoporous Ternary Nitrides of Earth-Abundant Metals as Oxygen Evolution Electrocatalyst. Nano-Micro Letters, 2020, 12, 79.	27.0	63
28	Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science, 2020, 113, 100665.	32.8	61
29	Fe2O3 nanoparticles-decorated MoO3 nanobelts for enhanced chemiresistive gas sensing. Journal of Alloys and Compounds, 2019, 782, 672-678.	5.5	60
30	Low Workingâ€Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites. Small, 2016, 12, 3128-3133.	10.0	57
31	Ordered Mesoporous Cobalt–Nickel Nitride Prepared by Nanocasting for Oxygen Evolution Reaction Electrocatalysis. Advanced Materials Interfaces, 2019, 6, 1900960.	3.7	57
32	Mesoporous Metal Nitride Materials Prepared from Bulk Oxides. Journal of the American Ceramic Society, 2012, 95, 3084-3089.	3.8	56
33	Facile synthesis of tin-doped mayenite electride composite as a non-noble metal durable electrocatalyst for oxygen reduction reaction (ORR). Dalton Transactions, 2018, 47, 13498-13506.	3.3	56
34	Cobalt–zinc nitride on nitrogen doped carbon black nanohybrids as a non-noble metal electrocatalyst for oxygen reduction reaction. Nanoscale, 2017, 9, 6259-6263.	5.6	55
35	Mechanochemical synthesis of multi-site electrocatalysts as bifunctional zinc–air battery electrodes. Journal of Materials Chemistry A, 2019, 7, 19355-19363.	10.3	53
36	Mixed ternary transition metal nitrides: A comprehensive review of synthesis, electronic structure, and properties of engineering relevance. Progress in Solid State Chemistry, 2019, 53, 1-26.	7.2	50

#	Article	IF	CITATIONS
37	Nano-structured ternary niobium titanium nitrides as durable non-carbon supports for oxygen reduction reaction. Chemical Communications, 2013, 49, 10853.	4.1	49
38	Mesoporous chromium nitride as a high performance non-carbon support for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2013, 15, 7041.	2.8	49
39	Template-Free Synthesis of Mesoporous Transition Metal Nitride Materials from Ternary Cadmium Transition Metal Oxides. Chemistry of Materials, 2012, 24, 4406-4409.	6.7	47
40	Porous coral-like NiCo2O4 nanospheres with promising xylene gas sensing properties. Sensors and Actuators B: Chemical, 2018, 261, 203-209.	7.8	47
41	A dendrochronological analysis of maximum summer half-year temperature variations over the past 700 years on the northeastern Tibetan Plateau. Theoretical and Applied Climatology, 2008, 93, 195-206.	2.8	46
42	Programmed Synthesis of Sn ₃ N ₄ Nanoparticles via a Soft Chemistry Approach with Urea: Application for Ethanol Vapor Sensing. Chemistry of Materials, 2017, 29, 969-974.	6.7	45
43	Mesoporous vanadium nitride as a high performance catalyst support for formic acid electrooxidation. Chemical Communications, 2012, 48, 10502.	4.1	44
44	Nickel–Iron Nitride–Nickel Sulfide Composites for Oxygen Evolution Electrocatalysis. ACS Applied Materials & Diterfaces, 2020, 12, 41464-41470.	8.0	44
45	Facile synthesis of iron oxide coupled and doped titania nanocomposites: tuning of physicochemical and photocatalytic properties. RSC Advances, 2016, 6, 72791-72802.	3. 6	43
46	Three-Dimensional Mesoporous Phosphide–Spinel Oxide Heterojunctions with Dual Function as Catalysts for Overall Water Splitting. ACS Applied Energy Materials, 2020, 3, 1684-1693.	5.1	43
47	Strong optical absorption in CuTaN2 nitride delafossite. Energy and Environmental Science, 2013, 6, 2994.	30.8	42
48	Metal-organic frameworks-derived porous ZnO/Ni0.9Zn0.1O double-shelled nanocages as gas sensing material for selective detection of xylene. Sensors and Actuators B: Chemical, 2017, 252, 649-656.	7.8	40
49	Morphology-controlled synthesis of TiO ₂ /MoS ₂ nanocomposites with enhanced visible-light photocatalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 145-152.	6.0	40
50	Titanium Nitride-Supported Platinum with Metal–Support Interaction for Boosting Photocatalytic H ₂ Evolution of Indium Sulfide. ACS Applied Materials & Interfaces, 2021, 13, 7238-7247.	8.0	40
51	Ru-decorated WO3 nanosheets for efficient xylene gas sensing application. Journal of Alloys and Compounds, 2020, 826, 154196.	5. 5	39
52	Construction of Co3O4/CoWO4 core-shell urchin-like microspheres through ion-exchange method for high-performance acetone gas sensing performance. Sensors and Actuators B: Chemical, 2020, 309, 127711.	7.8	38
53	Reaction pathway and wiring network dependent Li/Na storage of micro-sized conversion anode with mesoporosity and metallic conductivity. Journal of Materials Chemistry A, 2015, 3, 509-514.	10.3	37
54	High-Performance Supercapacitor Electrode Obtained by Directly Bonding 2D Materials: Hierarchal MoS2 on Reduced Graphene Oxide. Frontiers in Materials, 2020, 7, .	2.4	35

#	Article	IF	Citations
55	Interface Engineering with Ultralow Ruthenium Loading for Efficient Water Splitting. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36177-36185.	8.0	35
56	Aliovalent Fe(<scp>iii</scp>)-doped NiO microspheres for enhanced butanol gas sensing properties. Dalton Transactions, 2018, 47, 15181-15188.	3.3	34
57	Chromium-titanium nitride as an efficient co-catalyst for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 15774-15781.	10.3	34
58	Highly selective and sensitive xylene sensors based on Nb-doped NiO nanosheets. Sensors and Actuators B: Chemical, 2020, 308, 127520.	7.8	33
59	Interface catalysis by Pt nanocluster@Ni ₃ N for bifunctional hydrogen evolution and oxygen evolution. Materials Chemistry Frontiers, 2020, 4, 2665-2672.	5.9	33
60	Mesoporous WO ₃ modified by Au nanoparticles for enhanced trimethylamine gas sensing properties. Dalton Transactions, 2021, 50, 970-978.	3.3	33
61	Prussian blue derived Fe ₂ N for efficiently improving the photocatalytic hydrogen evolution activity of g-C ₃ N ₄ nanosheets. Catalysis Science and Technology, 2019, 9, 2571-2577.	4.1	32
62	Increased activity of nitrogen-doped graphene-like carbon sheets modified by iron doping for oxygen reduction. Journal of Colloid and Interface Science, 2019, 536, 42-52.	9.4	32
63	Engineering Co3+ cations in Co3O4 multishelled microspheres by Mn doping: The roles of Co3+ and oxygen species for sensitive xylene detection. Sensors and Actuators B: Chemical, 2020, 308, 127651.	7.8	31
64	Facile in situ nitrogen-doped carbon coated iron sulfide as green and efficient adsorbent for stable lithium–sulfur batteries. Chemical Engineering Journal, 2021, 404, 126462.	12.7	31
65	Ni-Mo ternary nitrides based one-dimensional hierarchical structures for efficient hydrogen evolution. Chemical Engineering Journal, 2020, 381, 122611.	12.7	29
66	Holey Sheets of Interconnected Carbon-Coated Nickel Nitride Nanoparticles as Highly Active and Durable Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 6774-6780.	5.1	28
67	Dual-phase metal nitrides as highly efficient co-catalysts for photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 416, 129116.	12.7	28
68	Facile synthesis of mesoporous Co3O4 nanofans as gas sensing materials for selective detection of xylene vapor. Materials Letters, 2018, 218, 127-130.	2.6	27
69	Ni3N-V2O3 enables highly efficient 5-(Hydroxymethyl) furfural oxidation enabling membrane free hydrogen production. Chemical Engineering Journal, 2021, 415, 128864.	12.7	27
70	Hierarchical Co3O4@NiMoO4 core-shell nanowires for chemiresistive sensing of xylene vapor. Mikrochimica Acta, 2019, 186, 222.	5.0	26
71	Pt/WN based fuel cell type methanol sensor. Sensors and Actuators B: Chemical, 2020, 307, 127686.	7.8	26
72	Co3Mo3N—An efficient multifunctional electrocatalyst. Innovation(China), 2021, 2, 100096.	9.1	26

#	Article	IF	CITATIONS
73	Novel 3D flower-like micro/nano-structure FeS/N-doped-C composites as advanced cathodes with high lithium storage performances. Journal of Power Sources, 2019, 431, 226-231.	7.8	25
74	Large-scale synthesis of dual-emitting-based visualization sensing paper for humidity and ethanol detection. Sensors and Actuators B: Chemical, 2019, 282, 9-15.	7.8	25
75	Boosting Oxygen Reduction for Highâ€Efficiency H ₂ O ₂ Electrosynthesis on Oxygenâ€Coordinated CoNC Catalysts. Small, 2022, 18, e2200730.	10.0	25
76	Enhanced, stable, humidity-tolerant xylene sensing using ordered macroporous NiO/ZrO2 nanocomposites. Sensors and Actuators B: Chemical, 2020, 324, 128648.	7.8	24
77	Platinum decorated mesoporous titanium nitride for fuel-cell type methanol gas sensor. Sensors and Actuators B: Chemical, 2020, 308, 127713.	7.8	24
78	Facile synthesis of In2O3 microcubes with exposed $\{1\ 0\ 0\}$ facets as gas sensing material for selective detection of ethanol vapor. Materials Letters, 2017, 209, 618-621.	2.6	23
79	Nanoheterostructures of Partially Oxidized RuNi Alloy as Bifunctional Electrocatalysts for Overall Water Splitting. ChemSusChem, 2020, 13, 2739-2744.	6.8	23
80	Metal organic framework-derived porous Fe2N nanocubes by rapid-nitridation for efficient photocatalytic hydrogen evolution. Materials Advances, 2020, 1, 1161-1167.	5 . 4	22
81	Surface Functionalized Sensors for Humidityâ€Independent Gas Detection. Angewandte Chemie, 2021, 133, 6635-6640.	2.0	22
82	Integrated sensing array of the perovskite-type LnFeO3 (LnËŁa, Pr, Nd, Sm) to discriminate detection of volatile sulfur compounds. Journal of Hazardous Materials, 2021, 413, 125380.	12.4	22
83	Flower-like nitrogen-oxygen-doped carbon encapsulating sulfur composite synthesized via in-situ oxidation approach. Chemical Engineering Journal, 2018, 345, 271-279.	12.7	21
84	Functional Differentiation of Three Pores for Effective Sulfur Confinement in Li–S Battery. Small, 2018, 14, e1703279.	10.0	21
85	Highly Localized C–N2 Sites for Efficient Oxygen Reduction. ACS Catalysis, 2020, 10, 9366-9375.	11.2	21
86	Catalytic Wet Air Oxidation of Coke-Plant Wastewater on Ruthenium-Based Eggshell Catalysts in a Bubbling Bed Reactor. Bulletin of Environmental Contamination and Toxicology, 2007, 79, 66-70.	2.7	20
87	A novel synthetic route to cathode materials for Li–S batteries: from organic sulfides to sulfur/nitrogenous carbon composites. Journal of Materials Chemistry A, 2017, 5, 16796-16802.	10.3	20
88	Efficient photocatalytic hydrogen evolution over carbon supported antiperovskite cobalt zinc nitride. Chemical Engineering Journal, 2021, 408, 127307.	12.7	20
89	Oxygen Coordination on Fe–N–C to Boost Oxygen Reduction Catalysis. Journal of Physical Chemistry Letters, 2021, 12, 517-524.	4.6	20
90	Goldâ€Clusterâ€Based Dualâ€Emission Nanocomposite Film as Ratiometric Fluorescent Sensing Paper for Specific Metal Ion. Particle and Particle Systems Characterization, 2018, 35, 1700471.	2.3	19

#	Article	IF	Citations
91	Oxidized impurity in transition metal nitride for improving the hydrogen evolution efficiency of transition metal nitride-based catalyst. Applied Materials Today, 2020, 18, 100476.	4.3	19
92	Ordered mesoporous transition metal nitrides prepared through hard template nanocasting and rapid nitridation process. Journal of Alloys and Compounds, 2020, 838, 155375.	5.5	19
93	Supporting nickel on vanadium nitride for comparable hydrogen evolution performance to platinum in alkaline solution. Journal of Materials Chemistry A, 2021, 9, 19669-19674.	10.3	19
94	Visible light photocatalysts (Fe, N):TiO 2 from ammonothermally processed, solvothermal self-assembly derived Fe-TiO 2 mesoporous microspheres. Materials Chemistry and Physics, 2017, 195, 259-267.	4.0	18
95	Geometric Structure and Electronic Polarization Synergistically Boost Hydrogen Evolution Kinetics in Alkaline Medium. Journal of Physical Chemistry Letters, 2020, 11, 3436-3442.	4.6	18
96	¹¹⁹ Sn Mössbauer and Ferromagnetic Studies on Hierarchical Tin- and Nitrogen-Codoped TiO ₂ Microspheres with Efficient Photocatalytic Performance. Journal of Physical Chemistry C, 2017, 121, 6662-6673.	3.1	17
97	Fe ₃ C cluster-promoted single-atom Fe, N doped carbon for oxygen-reduction reaction. Physical Chemistry Chemical Physics, 2020, 22, 7218-7223.	2.8	17
98	Surface Modification Using Polydopamine-Coated Liquid Metal Nanocapsules for Improving Performance of Graphene Paper-Based Thermal Interface Materials. Nanomaterials, 2021, 11, 1236.	4.1	17
99	High-density catalytic heterostructures strung by buried-in carbon tube network as monolithic holey host for endurable Li-S batteries. Chemical Engineering Journal, 2022, 446, 137294.	12.7	17
100	Caged-Cation-Induced Lattice Distortion in Bronze TiO ₂ for Cohering Nanoparticulate Hydrogen Evolution Electrocatalysts. ACS Nano, 2022, 16, 9920-9928.	14.6	17
101	Co-precipitation strategy for engineering pH-tolerant and durable ZnO@MgO nanospheres for efficient, room-temperature, chemisorptive removal of Pb(II) from water. Journal of Environmental Chemical Engineering, 2019, 7, 103019.	6.7	16
102	Selective and Continuous Electrosynthesis of Hydrogen Peroxide on Nitrogen-doped Carbon Supported Nickel. Cell Reports Physical Science, 2020, 1, 100255.	5.6	16
103	Effect of nitridation on visible light photocatalytic behavior of microporous (Ag, Ag 2 O) co-loaded TiO 2. Microporous and Mesoporous Materials, 2017, 240, 137-144.	4.4	15
104	Iron-nitrogen dual-doped three-dimensional mesoporous carbons for high-activity electrocatalytic oxygen reduction. Applied Materials Today, 2018, 13, 174-181.	4.3	14
105	Nanourchin ZnO@TiCN composites for Cr (VI) adsorption and thermochemical remediation. Journal of Environmental Chemical Engineering, 2018, 6, 3837-3848.	6.7	14
106	S, N dual-doped porous carbon materials derived from biomass for Na ion storage and O2 electroreduction. Microporous and Mesoporous Materials, 2020, 294, 109930.	4.4	14
107	Mesoporous titanium niobium nitrides supported Pt nanoparticles for highly selective and sensitive formaldehyde sensing. Journal of Materials Chemistry A, 2021, 9, 19840-19846.	10.3	14
108	Enhanced visible light photocatalytic activity in N-doped edge- and corner-truncated octahedral Cu2O. Solid State Sciences, 2017, 65, 22-28.	3.2	13

7

#	Article	IF	CITATIONS
109	Hierarchical Ni3ZnN Hollow Microspheres as Stable Non-Noble Metal Electrocatalysts for Oxygen Reduction Reactions. Electrocatalysis, 2018, 9, 452-458.	3.0	13
110	Grand Canonical Monte Carlo Simulations on Phase Equilibria of Methane, Carbon Dioxide, and Their Mixture Hydrates. Journal of Physical Chemistry B, 2018, 122, 9724-9737.	2.6	13
111	ZnO nanoflowers modified with RuO2 for enhancing acetone sensing performance. Nanotechnology, 2020, 31, 115502.	2.6	13
112	Amine coupled ordered mesoporous (Co–N) co-doped TiO ₂ : a green photocatalyst for the selective aerobic oxidation of thioether. Catalysis Science and Technology, 2017, 7, 4182-4192.	4.1	12
113	Integrating trace amounts of Pd nanoparticles into Mo ₃ N ₂ nanobelts for an improved hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2022, 24, 771-777.	2.8	12
114	Manganese-doped zinc oxide hollow balls for chemiresistive sensing of acetone vapors. Mikrochimica Acta, 2019, 186, 44.	5.0	11
115	Theoretical study on W-Co3O4 (1 11) surface: Acetone adsorption and sensing mechanism. Applied Surface Science, 2021, 566, 150642.	6.1	11
116	MOF-Derived Porous Ternary Nickel Iron Nitride Nanocube as a Functional Catalyst toward Water Splitting Hydrogen Evolution for Solar to Chemical Energy Conversion. ACS Applied Energy Materials, 2022, 5, 6155-6162.	5.1	11
117	Magnetic micro scavengers: highly porous Ni1â^x Co x Fe2O4 microcubes for efficient disintegration of nitrophenol. Nanotechnology, 2018, 29, 215710.	2.6	10
118	A novel porous Mo ₃ N ₂ /MoO ₃ hybrid nanobelt as supercapacitor electrode material. Nano Futures, 2018, 2, 045001.	2.2	10
119	Solid–Solid Separation Approach for Preparation of Carbon-Supported Cobalt Carbide Nanoparticle Catalysts for Oxygen Reduction. ACS Applied Nano Materials, 2019, 2, 3662-3670.	5.0	10
120	Adsorption Behaviors and Phase Equilibria for Clathrate Hydrates of Sulfur- and Nitrogen-Containing Small Molecules. Journal of Physical Chemistry C, 2019, 123, 2691-2702.	3.1	10
121	Experimental and Theoretical Insights of MoS 2 /Mo 3 N 2 Nanoribbonâ€Electrocatalysts for Efficient Hydrogen Evolution Reaction. ChemCatChem, 2020, 12, 122-128.	3.7	10
122	Recent Advances in Nanocasting Cobalt-Based Mesoporous Materials for Energy Storage and Conversion. Electrocatalysis, 2020, 11, 465-484.	3.0	10
123	Interface engineering of mesoporous triphasic cobalt–copper phosphides as active electrocatalysts for overall water splitting. Sustainable Energy and Fuels, 2021, 5, 1366-1373.	4.9	10
124	Clustered-Microcapsule-Shaped Microporous Carbon-Coated Sulfur Composite Synthesized via in Situ Oxidation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44512-44518.	8.0	9
125	Ultraâ€low Loading of Au Clusters on Nickel Nitride Efficiently Boosts Photocatalytic Hydrogen Production with Titanium Dioxide. ChemCatChem, 2020, 12, 2752-2759.	3.7	9
126	Nitridation of CoWO ₄ /CdS Nanocomposite Formed Metal Nitrides Assisting Efficiently Photocatalytic Hydrogen Evolution. ACS Omega, 2020, 5, 9969-9976.	3 . 5	9

#	Article	IF	CITATIONS
127	Mesoporous Ti0.5Cr0.5N for trace H2S detection with excellent long-term stability. Journal of Hazardous Materials, 2022, 423, 127193.	12.4	9
128	Co ₄ N–WN _{<i>x</i>} composite for efficient piezocatalytic hydrogen evolution. Dalton Transactions, 2022, 51, 7127-7134.	3.3	9
129	Anti-perovskite metal carbides: A new family of promising electrocatalysts for oxygen reduction in alkaline solution. Materials Research Bulletin, 2021, 133, 111014.	5.2	8
130	In2O3 nanocubes modified with RuO2 for detection of TXM vapors containing benzyl group. Sensors and Actuators B: Chemical, 2021, 338, 129731.	7.8	8
131	Excellent stability fuel cell type methanol sensor based on platinum-decorated mesoporous CrN. Sensors and Actuators B: Chemical, 2021, 341, 129993.	7.8	8
132	Template synthesis of CoFe ₂ O ₄ extended surface microspheres for efficient water decontamination and absorption of electromagnetic waves: Twin behavior. Materials Research Express, 2019, 6, 075506.	1.6	7
133	Towards continuous ammonia electro-oxidation reaction on Pt catalysts with weakened adsorption of atomic nitrogen. International Journal of Hydrogen Energy, 2020, 45, 21816-21824.	7.1	7
134	A dimethyl disulfide gas sensor based on nanosized Pt-loaded tetrakaidecahedral α-Fe ₂ O ₃ nanocrystals. Nanotechnology, 2022, 33, 405502.	2.6	7
135	A mesoporous Ni ₃ N/NiO composite with a core–shell structure for room temperature, selective and sensitive NO ₂ gas sensing. RSC Advances, 2016, 6, 42917-42922.	3.6	6
136	Flowerâ€like FeS Coated with Heteroatom (S,N)â€Doped Carbon as Highly Active and Durable Oxygen Reduction Electrocatalysts. ChemElectroChem, 2020, 7, 2433-2439.	3.4	6
137	Nitrogen, sulfur co-doped carbon coated zinc sulfide for efficient hydrogen peroxide electrosynthesis. Dalton Transactions, 2021, 50, 5416-5419.	3.3	6
138	A fuel cell type gas sensor based on Pt/NbN for highly selective detection of hydrogen sulfide. Sensors and Actuators B: Chemical, 2021, 346, 130516.	7.8	6
139	Spin engineering of single-site metal catalysts. Innovation(China), 2022, 3, 100268.	9.1	6
140	Ordered mesoporous carbon assisted Fe–N–C for efficient oxygen reduction catalysis in both acidic and alkaline media. Nanotechnology, 2020, 31, 165708.	2.6	5
141	FeNi ₃ –FeNi ₃ N – a high-performance catalyst for overall water splitting. Sustainable Energy and Fuels, 2020, 4, 6245-6250.	4.9	5
142	Molten Salts–Assisted Fabrication of Fe, S, and N Coâ€Doped Carbon as Efficient Oxygen Reduction Reaction Catalyst. Energy Technology, 2020, 8, 1900896.	3.8	4
143	A Surfaceâ€Oxideâ€Rich Activation Layer (SOAL) on Ni 2 Mo 3 N for a Rapid and Durable Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 18192-18197.	2.0	4
144	Surface oxidation for enhancing the hydrogen evolution reaction of metal nitrides: a theoretical study on vanadium nitride. Materials Advances, 0, , .	5.4	4

#	Article	IF	CITATIONS
145	Oxygen Release and Incorporation Behaviors Influenced by A-Site Cation Order/Disorder in LaCa ₂ Fe ₃ O ₉ with Unusually High Valence Fe ^{3.67+} . Chemistry of Materials, 2022, 34, 345-350.	6.7	4
146	Analysis of gluconate metabolism for pyruvate production in engineered <i>Escherichia coli </i> based on genome-wide transcriptomes. Letters in Applied Microbiology, 2017, 65, 165-172.	2.2	3
147	Photoinduced Interfacial Electron Transfer in 2,2'â€Bipyridyl Iron(III) Complexâ€TiO ₂ Nanoparticles in Aqueous Medium. ChemistrySelect, 2017, 2, 10648-10653.	1.5	3
148	Cobalt Nanoparticles Modified Single-Walled Titanium Carbonitride Nanotube Derived from Solid-Solid Separation for Oxygen Reduction Reaction in Alkaline Solution. Electrocatalysis, 2020, 11, 579-592.	3.0	3
149	A size tunable bimetallic nickel-zinc nitride as a multi-functional co-catalyst on nitrogen doped titania boosts solar energy conversion. Dalton Transactions, 2020, 49, 4887-4895.	3.3	3
150	Sandwichâ€like Catalystâ€"Carbonâ€"Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithiumâ€"Sulfur Batteries. Angewandte Chemie, 2020, 132, 12227-12236.	2.0	3
151	Low platinum catalyst supported on titanium molybdenum nitride for efficient CO sensing. Sensors and Actuators B: Chemical, 2022, 364, 131917.	7.8	3
152	A novel porous Mo ₃ N ₂ /MoO ₃ hybrid nanobelts as supercapacitor electrode material. Nano Futures, 2018, , .	2.2	2
153	Carbon-Encapsulated Cobalt Phosphide Catalyst for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the Electrochemical Society, 2022, 169, 024509.	2.9	1
154	Mo3N2/VO2 composite as electrocatalysts for hydrogen evolution reaction. Inorganic Chemistry Communication, 2022, 142, 109614.	3.9	1