Annette Hastie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/769386/publications.pdf

Version: 2024-02-01

49 4,565 papers citations

147566 31 h-index 49 g-index

49 all docs 49 docs citations

49 times ranked 6086 citing authors

#	Article	IF	Citations
1	Lung function, airway and peripheral basophils and eosinophils are associated with molecular pharmacogenomic endotypes of steroid response in severe asthma. Thorax, 2022, 77, 452-460.	2.7	3
2	Identification of Sputum Biomarkers Predictive of Pulmonary Exacerbations in COPD. Chest, 2022, 161, 1239-1249.	0.4	20
3	The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: An overview of Network organization, procedures, and interventions. Journal of Allergy and Clinical Immunology, 2022, 149, 488-516.e9.	1.5	24
4	Obesity alters pathology and treatment response in inflammatory disease. Nature, 2022, 604, 337-342.	13.7	93
5	A Metabolomic Severity Score for Airflow Obstruction and Emphysema. Metabolites, 2022, 12, 368.	1.3	8
6	The Impact of Insulin Resistance on Loss of Lung Function and Response to Treatment in Asthma. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1096-1106.	2.5	28
7	Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways. Journal of Allergy and Clinical Immunology, 2021, 147, 894-909.	1.5	50
8	Mucus Plugs and Emphysema in the Pathophysiology of Airflow Obstruction and Hypoxemia in Smokers. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 957-968.	2.5	71
9	Responsiveness to Parenteral Corticosteroids and Lung Function Trajectory in Adults with Moderate-to-Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 841-852.	2.5	14
10	The chemokine CX3CL1/fractalkine regulates immunopathogenesis during fungal-associated allergic airway inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L393-L404.	1,3	9
11	Lung microbiota associations with clinical features of COPD in the SPIROMICS cohort. Npj Biofilms and Microbiomes, 2021, 7, 14.	2.9	33
12	Mixed Sputum Granulocyte Longitudinal Impact on Lung Function in the Severe Asthma Research Program. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 882-892.	2.5	39
13	Chitinase 3-like-1 protects airway function despite promoting type 2 inflammation during fungal-associated allergic airway inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L615-L626.	1.3	7
14	Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respiratory Medicine, the, 2021, 9, 1241-1254.	5.2	80
15	Investigation of the relationship between IL-6 and type 2 biomarkers in patients with severe asthma. Journal of Allergy and Clinical Immunology, 2020, 145, 430-433.	1.5	38
16	Comparison of Proteomic Assessment Methods in Multiple Cohort Studies. Proteomics, 2020, 20, e1900278.	1.3	103
17	Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and receptors in type 1, type 2 and type 17 inflammation in cross-sectional asthma study. Thorax, 2020, 75, 808-811.	2.7	3
18	Evidence for Exacerbation-Prone Asthma and Predictive Biomarkers of Exacerbation Frequency. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 973-982.	2.5	105

#	Article	IF	CITATIONS
19	Baseline sputum eosinophilÂ+ neutrophil subgroups' clinical characteristics and longitudinal trajectories for NHLBI Severe Asthma Research Program (SARP 3) cohort. Journal of Allergy and Clinical Immunology, 2020, 146, 222-226.	1.5	25
20	COVID-19–related Genes in Sputum Cells in Asthma. Relationship to Demographic Features and Corticosteroids. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 83-90.	2.5	370
21	Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort. JCI Insight, 2020, 5, .	2.3	37
22	Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1358-1367.	2.5	91
23	BAL Cell Gene Expression in Severe Asthma Reveals Mechanisms of Severe Disease and Influences of Medications. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 837-856.	2.5	37
24	Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1076-1085.	2.5	165
25	Systemic Markers of Inflammation in Smokers With Symptoms Despite PreservedÂSpirometry in SPIROMICS. Chest, 2019, 155, 908-917.	0.4	18
26	Refractory airway type 2 inflammation in a large subgroup of asthmatic patients treated with inhaled corticosteroids. Journal of Allergy and Clinical Immunology, 2019, 143, 104-113.e14.	1.5	135
27	IL-1RA regulates immunopathogenesis during fungal-associated allergic airway inflammation. JCI Insight, 2019, 4, .	2.3	21
28	Complex association patterns for inflammatory mediators in induced sputum from subjects with asthma. Clinical and Experimental Allergy, 2018, 48, 787-797.	1.4	49
29	Alveolar eosinophilia in current smokers with chronic obstructive pulmonary disease in the SPIROMICS cohort. Journal of Allergy and Clinical Immunology, 2018, 141, 429-432.	1.5	12
30	The common \hat{I}^3 -chain cytokine IL-7 promotes immunopathogenesis during fungal asthma. Mucosal Immunology, 2018, 11, 1352-1362.	2.7	20
31	Baseline Features of the Severe Asthma Research Program (SARP III) Cohort: Differences with Age. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 545-554.e4.	2.0	210
32	Effects of bronchoscopy on lung function in asthmatics. Journal of Asthma, 2017, 54, 866-871.	0.9	3
33	Natural killer cell–mediated inflammation resolution is disabled in severe asthma. Science Immunology, 2017, 2, .	5.6	76
34	Effects of Age and Disease Severity on Systemic Corticosteroid Responses in Asthma. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1439-1448.	2.5	87
35	Airway Mucin Concentration as a Marker of Chronic Bronchitis. New England Journal of Medicine, 2017, 377, 911-922.	13.9	279
36	Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort. Lancet Respiratory Medicine, the, 2017, 5, 956-967.	5. 2	211

3

#	Article	lF	CITATIONS
37	ALX receptor ligands define a biochemical endotype for severe asthma. JCI Insight, 2017, 2, .	2.3	29
38	Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respiratory Medicine, the, 2016, 4, 574-584.	5.2	375
39	Expression of asthma susceptibility genes in bronchial epithelial cells and bronchial alveolar lavage in the Severe Asthma Research Program (SARP) cohort. Journal of Asthma, 2016, 53, 775-782.	0.9	23
40	<scp>eQTL</scp> of bronchial epithelial cells and bronchial alveolar lavage deciphers <scp>GWAS</scp> â€identified asthma genes. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1309-1318.	2.7	82
41	IL-6 trans-signaling increases expression of airways disease genes in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L129-L138.	1.3	42
42	Design of a multi-center immunophenotyping analysis of peripheral blood, sputum and bronchoalveolar lavage fluid in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS). Journal of Translational Medicine, 2015, 13, 19.	1.8	41
43	Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. Journal of Allergy and Clinical Immunology, 2014, 133, 1557-1563.e5.	1.5	488
44	Effect of rare variants in ADRB2 on risk of severe exacerbations and symptom control during longacting \hat{l}^2 agonist treatment in a multiethnic asthma population: a genetic study. Lancet Respiratory Medicine,the, 2014, 2, 204-213.	5.2	100
45	Genome-wide association study identifies TH1 pathway genes associated with lung function in asthmatic patients. Journal of Allergy and Clinical Immunology, 2013, 132, 313-320.e15.	1.5	98
46	Biomarker surrogates do not accurately predict sputum eosinophil and neutrophil percentages in asthmatic subjects. Journal of Allergy and Clinical Immunology, 2013, 132, 72-80.e12.	1.5	224
47	Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. Journal of Allergy and Clinical Immunology, 2010, 125, 1028-1036.e13.	1.5	405
48	Alterations in vasodilator-stimulated phosphoprotein (VASP) phosphorylation: associations with asthmatic phenotype, airway inflammation and \hat{l}^2 2-agonist use. Respiratory Research, 2006, 7, 25.	1.4	8
49	Differential Expression of TRAIL and TRAIL Receptors in Allergic Asthmatics Following Segmental Antigen Challenge: Evidence for a Role of TRAIL in Eosinophil Survival. Journal of Immunology, 2002, 169, 5986-5996.	0.4	76