
Xing-Long Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7693369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon Coated Fe ₃ O ₄ Nanospindles as a Superior Anode Material for Lithiumâ€lon Batteries. Advanced Functional Materials, 2008, 18, 3941-3946.	7.8	1,177
2	High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy and Environmental Science, 2014, 7, 1643-1647.	15.6	852
3	LiFePO ₄ Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy‣torage Devices. Advanced Materials, 2009, 21, 2710-2714.	11.1	647
4	Synthesis and Lithium Storage Properties of Co ₃ O ₄ Nanosheetâ€Assembled Multishelled Hollow Spheres. Advanced Functional Materials, 2010, 20, 1680-1686.	7.8	642
5	Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3: Large-Scale Synthesis, Formation Mechanism, and Properties. Angewandte Chemie - International Edition, 2005, 44, 4197-4201.	7.2	433
6	Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 10661.	6.7	383
7	Carbonâ€Nanotubeâ€Decorated Nanoâ€LiFePO ₄ @C Cathode Material with Superior Highâ€Rate and Lowâ€Temperature Performances for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 1155-1160.	10.2	351
8	Highâ€Energy/Power and Lowâ€Temperature Cathode for Sodiumâ€Ion Batteries: In Situ XRD Study and Superior Fullâ€Cell Performance. Advanced Materials, 2017, 29, 1701968.	11.1	350
9	A Highâ€Energy Lithiumâ€Ion Capacitor by Integration of a 3D Interconnected Titanium Carbide Nanoparticle Chain Anode with a Pyridineâ€Derived Porous Nitrogenâ€Doped Carbon Cathode. Advanced Functional Materials, 2016, 26, 3082-3093.	7.8	330
10	Highly Dispersed RuO ₂ Nanoparticles on Carbon Nanotubes: Facile Synthesis and Enhanced Supercapacitance Performance. Journal of Physical Chemistry C, 2010, 114, 2448-2451.	1.5	312
11	Nâ€Doped Carbonâ€Coated Ni _{1.8} Co _{1.2} Se ₄ Nanoaggregates Encapsulated in Nâ€Doped Carbon Nanoboxes as Advanced Anode with Outstanding Highâ€Rate and Lowâ€Temperature Performance for Sodiumâ€ion Half/Full Batteries. Advanced Functional Materials, 2018, 28. 1805444.	7.8	228
12	A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe ₃ O ₄ -Derived Fe ₃ O ₄ @FeS with Superior Full-Cell Performance. ACS Applied Materials & Interfaces, 2018, 10, 3581-3589.	4.0	209
13	α-Fe ₂ O ₃ Nanostructures: Inorganic Salt-Controlled Synthesis and Their Electrochemical Performance toward Lithium Storage. Journal of Physical Chemistry C, 2008, 112, 16824-16829.	1.5	206
14	A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 14061.	5.2	206
15	An Ultralong Lifespan and Lowâ€Temperature Workable Sodiumâ€Ion Full Battery for Stationary Energy Storage. Advanced Energy Materials, 2018, 8, 1703252.	10.2	206
16	Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Science Bulletin, 2020, 65, 702-710.	4.3	197
17	Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem. Chemistry of Materials, 2010, 22, 1908-1914.	3.2	193
18	Highly Improved Cycling Stability of Anion Deâ€/Intercalation in the Graphite Cathode for Dualâ€Ion Batteries. Advanced Materials, 2019, 31, e1804766.	11.1	192

#	Article	IF	CITATIONS
19	Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: <i>in operando</i> X-ray diffraction studies and an advanced anode material for Na/K-ion batteries. Energy and Environmental Science, 2019, 12, 3575-3584.	15.6	189
20	Controllable Preparation of Square Nickel Chalcogenide (NiS and NiSe ₂) Nanoplates for Superior Li/Na Ion Storage Properties. ACS Applied Materials & Interfaces, 2016, 8, 25261-25267.	4.0	185
21	Solvothermal Synthesis of LiFePO4 Hierarchically Dumbbell-Like Microstructures by Nanoplate Self-Assembly and Their Application as a Cathode Material in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2009, 113, 3345-3351.	1.5	184
22	Selfâ€Supporting, Flexible, Additiveâ€Free, and Scalable Hard Carbon Paper Selfâ€Interwoven by 1D Microbelts: Superb Room/Lowâ€Temperature Sodium Storage and Working Mechanism. Advanced Materials, 2019, 31, e1903125.	11.1	184
23	SnO ₂ -Based Hierarchical Nanomicrostructures: Facile Synthesis and Their Applications in Gas Sensors and Lithium-Ion Batteries. Journal of Physical Chemistry C, 2009, 113, 14213-14219.	1.5	183
24	P2-type Na 2/3 Mn 1-x Al x O 2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. Journal of Power Sources, 2017, 356, 80-88.	4.0	182
25	Rational Design of Anode Materials Based on Groupâ€IVA Elements (Si, Ge, and Sn) for Lithiumâ€lon Batteries. Chemistry - an Asian Journal, 2013, 8, 1948-1958.	1.7	181
26	Improved Reversibility of Fe ³⁺ /Fe ⁴⁺ Redox Couple in Sodium Super Ion Conductor Type Na ₃ Fe ₂ (PO ₄) ₃ for Sodiumâ€ion Batteries. Advanced Materials, 2017, 29, 1605694.	11.1	169
27	P2–Na _{2/3} Ni _{1/3} Mn _{5/9} Al _{1/9} O ₂ Microparticles as Superior Cathode Material for Sodium-Ion Batteries: Enhanced Properties and Mechanism via Graphene Connection. ACS Applied Materials & Interfaces, 2016, 8, 20650-20659.	4.0	168
28	In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 7790-7799.	4.0	167
29	1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochimica Acta, 2018, 264, 292-300.	2.6	166
30	In Situ Encapsulating αâ€MnS into N,Sâ€Codoped Nanotubeâ€Like Carbon as Advanced Anode Material: α → Transition Promoted Cycling Stability and Superior Li/Naâ€Storage Performance in Half/Full Cells. Advanced Materials, 2018, 30, e1706317.	β Phase 11.1	164
31	A Superior Na ₃ V ₂ (PO ₄) ₃ â€Based Nanocomposite Enhanced by Both Nâ€Doped Coating Carbon and Graphene as the Cathode for Sodiumâ€ion Batteries. Chemistry - A European Journal, 2015, 21, 17371-17378.	1.7	163
32	Co ₉ S ₈ /MoS ₂ Yolk–Shell Spheres for Advanced Li/Na Storage. Small, 2017, 13, 1603490.	5.2	162
33	Sonochemical Synthesis of Prussian Blue Nanocubes from a Single-Source Precursor. Crystal Growth and Design, 2006, 6, 26-28.	1.4	149
34	Multifunctional 0D–2D Ni ₂ P Nanocrystals–Black Phosphorus Heterostructure. Advanced Energy Materials, 2017, 7, 1601285.	10.2	149
35	Etherâ€Based Electrolyte Chemistry Towards Highâ€Voltage and Longâ€Life Naâ€Ion Full Batteries. Angewandte Chemie - International Edition, 2021, 60, 26837-26846.	7.2	147
36	A Practicable Li/Naâ€lon Hybrid Full Battery Assembled by a Highâ€Voltage Cathode and Commercial Graphite Anode: Superior Energy Storage Performance and Working Mechanism. Advanced Energy Materials, 2018, 8, 1702504.	10.2	142

#	Article	IF	CITATIONS
37	Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy, 2015, 13, 450-457.	8.2	139
38	Synthesis of Single-Crystalline Co ₃ O ₄ Octahedral Cages with Tunable Surface Aperture and Their Lithium Storage Properties. Journal of Physical Chemistry C, 2009, 113, 15553-15558.	1.5	138
39	Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. Nanoscale, 2011, 3, 2703.	2.8	138
40	Constructing the optimal conductive network in MnO-based nanohybrids as high-rate and long-life anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19738-19746.	5.2	135
41	Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries. Nanoscale, 2018, 10, 9218-9225.	2.8	135
42	Nitrogen-doped porous carbon: highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 7762-7769.	5.2	131
43	Progresses in Sustainable Recycling Technology of Spent Lithiumâ€ion Batteries. Energy and Environmental Materials, 2022, 5, 1012-1036.	7.3	131
44	Advanced P2-Na _{2/3} Ni _{1/3} Mn _{7/12} Fe _{1/12} O ₂ Cathode Material with Suppressed P2–O2 Phase Transition toward High-Performance Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 34272-34282.	4.0	127
45	Shape-controlled synthesis of Prussian blue analogue Co3[Co(CN)6]2 nanocrystals. Chemical Communications, 2005, , 2241.	2.2	125
46	An Advanced Highâ€Entropy Fluorophosphate Cathode for Sodiumâ€Ion Batteries with Increased Working Voltage and Energy Density. Advanced Materials, 2022, 34, e2110108.	11.1	125
47	Highâ€Performance and Lowâ€Temperature Lithium–Sulfur Batteries: Synergism of Thermodynamic and Kinetic Regulation. Advanced Energy Materials, 2018, 8, 1703638.	10.2	124
48	Metastable Marcasite-FeS ₂ as a New Anode Material for Lithium Ion Batteries: CNFs-Improved Lithiation/Delithiation Reversibility and Li-Storage Properties. ACS Applied Materials & Interfaces, 2017, 9, 10708-10716.	4.0	122
49	Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries. Energy and Environmental Science, 2020, 13, 1788-1798.	15.6	120
50	Facile Synthesis of Mesoporous TiO2â^'C Nanosphere as an Improved Anode Material for Superior High Rate 1.5 V Rechargeable Li Ion Batteries Containing LiFePO4â^C Cathode. Journal of Physical Chemistry C, 2010, 114, 10308-10313.	1.5	113
51	Superior Hybrid Cathode Material Containing Lithium-Excess Layered Material and Graphene for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 4858-4863.	4.0	112
52	Covalent Organic Framework with Highly Accessible Carbonyls and Ï€â€Cation Effect for Advanced Potassiumâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	112
53	Shale-like Co ₃ O ₄ for high performance lithium/sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 8242-8248.	5.2	108
54	Highâ€ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodiumâ€ion batteries. InformaÄnÃ-Materiály, 2021, 3, 694-704.	8.5	107

#	Article	IF	CITATIONS
55	Dual-Porosity SiO ₂ /C Nanocomposite with Enhanced Lithium Storage Performance. Journal of Physical Chemistry C, 2015, 119, 3495-3501.	1.5	105
56	The Effective Design of a Polysulfide-Trapped Separator at the Molecular Level for High Energy Density Li–S Batteries. ACS Applied Materials & Interfaces, 2016, 8, 16108-16115.	4.0	103
57	Microemulsion-Mediated Solvothermal Synthesis of SrCO3Nanostructures. Langmuir, 2005, 21, 6093-6096.	1.6	102
58	Self-Assembled LiFePO ₄ /C Nano/Microspheres by Using Phytic Acid as Phosphorus Source. Journal of Physical Chemistry C, 2012, 116, 5019-5024.	1.5	99
59	A carbon-coated Li3V2(PO4)3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 2508.	5.2	98
60	Selfâ€Wound Composite Nanomembranes as Electrode Materials for Lithium Ion Batteries. Advanced Materials, 2010, 22, 4591-4595.	11.1	96
61	Enhanced Li+ conductivity in PEO–LiBOB polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ionics, 2011, 186, 1-6.	1.3	96
62	Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy and Environmental Science, 2021, 14, 4936-4947.	15.6	96
63	Preparation and Li Storage Properties of Hierarchical Porous Carbon Fibers Derived from Alginic Acid. ChemSusChem, 2010, 3, 703-707.	3.6	95
64	Concurrent recycling chemistry for cathode/anode in spent graphite/LiFePO4 batteries: Designing a unique cation/anion-co-workable dual-ion battery. Journal of Energy Chemistry, 2022, 64, 166-171.	7.1	92
65	Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery. Journal of Energy Chemistry, 2020, 50, 416-423.	7.1	90
66	Advanced polyanionic electrode materials for potassium-ion batteries: Progresses, challenges and application prospects. Materials Today, 2022, 54, 189-201.	8.3	88
67	Air/water/temperature-stable cathode for all-climate sodium-ion batteries. Cell Reports Physical Science, 2021, 2, 100665.	2.8	86
68	Synthesis and Photoluminescent Properties of Strontium Tungstate Nanostructures. Journal of Physical Chemistry C, 2007, 111, 532-537.	1.5	84
69	Pore-size dominated electrochemical properties of covalent triazine frameworks as anode materials for K-ion batteries. Chemical Science, 2019, 10, 7695-7701.	3.7	84
70	Polymeric Molecular Design Towards Horizontal Zn Electrodeposits at Constrained 2D Zn ²⁺ Diffusion: Dendriteâ€Free Zn Anode for Long‣ife and Highâ€Rate Aqueous Zinc Metal Battery. Advanced Functional Materials, 2022, 32, .	7.8	84
71	Ni _{1.5} CoSe ₅ nanocubes embedded in 3D dual N-doped carbon network as advanced anode material in sodium-ion full cells with superior low-temperature and high-power properties. Journal of Materials Chemistry A, 2018, 6, 22966-22975.	5.2	83
72	Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries. Journal of Power Sources, 2016, 307, 738-745.	4.0	81

#	Article	IF	CITATIONS
73	Flexible P-Doped Carbon Cloth: Vacuum-Sealed Preparation and Enhanced Na-Storage Properties as Binder-Free Anode for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 12518-12527.	4.0	76
74	Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability. Nano Research, 2022, 15, 925-932.	5.8	75
75	Quasi-Solid-State Sodium-Ion Full Battery with High-Power/Energy Densities. ACS Applied Materials & Interfaces, 2018, 10, 17903-17910.	4.0	74
76	Compactly Coupled Nitrogenâ€Doped Carbon Nanosheets/Molybdenum Phosphide Nanocrystal Hollow Nanospheres as Polysulfide Reservoirs for Highâ€Performance Lithium–Sulfur Chemistry. Small, 2019, 15, e1902491.	5.2	74
77	Construction of Bimetallic Selenides Encapsulated in Nitrogen/Sulfur Coâ€Doped Hollow Carbon Nanospheres for Highâ€Performance Sodium/Potassiumâ€ion Half/Full Batteries. Small, 2020, 16, e1907670.	5.2	74
78	Enhanced electrode kinetics and electrochemical properties of low-cost NaFe2PO4(SO4)2 via Ca2+ doping as cathode material for sodium-ion batteries. Journal of Materials Science and Technology, 2021, 78, 176-182.	5.6	70
79	Isostructural and Multivalent Anion Substitution toward Improved Phosphate Cathode Materials for Sodiumâ€lon Batteries. Small, 2020, 16, e1907645.	5.2	69
80	An advanced cathode composite for co-utilization of cations and anions in lithium batteries. Journal of Materials Science and Technology, 2022, 102, 72-79.	5.6	69
81	P2-type Na 0.53 MnO 2 nanorods with superior rate capabilities as advanced cathode material for sodium ion batteries. Chemical Engineering Journal, 2017, 316, 499-505.	6.6	68
82	A promising PMHS/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Dalton Transactions, 2018, 47, 14932-14937.	1.6	67
83	Large-scale Ni-MOF derived Ni3S2 nanocrystals embedded in N-doped porous carbon nanoparticles for high-rate Na+ storage. Chinese Chemical Letters, 2021, 32, 895-899.	4.8	66
84	Spatial confinement of vertical arrays of lithiophilic SnS2 nanosheets enables conformal Li nucleation/growth towards dendrite-free Li metal anode. Energy Storage Materials, 2021, 36, 504-513.	9.5	66
85	3D Ordered Porous Hybrid of ZnSe/ <i>N</i> â€doped Carbon with Anomalously High Na ⁺ Mobility and Ultrathin Solid Electrolyte Interphase for Sodiumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2106194.	7.8	66
86	Prospects for managing endâ€ofâ€life lithiumâ€ion batteries: Present and future. , 2022, 1, 417-433.		66
87	Non-sacrificial template synthesis of Cr2O3–C hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 7565.	6.7	65
88	Nanoscale Polysulfides Reactors Achieved by Chemical Au–S Interaction: Improving the Performance of Li–S Batteries on the Electrode Level. ACS Applied Materials & Interfaces, 2015, 7, 27959-27967.	4.0	65
89	Coaxial α-MnSe@N-doped carbon double nanotubes as superior anode materials in Li/Na-ion half/full batteries. Journal of Materials Chemistry A, 2018, 6, 15797-15806.	5.2	65
90	Flexible Na/Kâ€lon Full Batteries from the Renewable Cotton Cloth–Derived Stable, Lowâ€Cost, and Binderâ€Free Anode and Cathode. Advanced Energy Materials, 2019, 9, 1902056.	10.2	64

#	Article	IF	CITATIONS
91	Advanced cathode for dual-ion batteries: Waste-to-wealth reuse of spent graphite from lithium-ion batteries. EScience, 2022, 2, 95-101.	25.0	64
92	Target construction of ultrathin graphitic carbon encapsulated FeS hierarchical microspheres featuring superior low-temperature lithium/sodium storage properties. Journal of Materials Chemistry A, 2018, 6, 7997-8005.	5.2	62
93	Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries. Journal of Energy Chemistry, 2021, 59, 589-598.	7.1	62
94	SbPS4: A novel anode for high-performance sodium-ion batteries. Chinese Chemical Letters, 2022, 33, 470-474.	4.8	62
95	Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochemistry Communications, 2009, 11, 1468-1471.	2.3	61
96	A novel polymer electrolyte with improved high-temperature-tolerance up to 170°C for high-temperature lithium-ion batteries. Journal of Power Sources, 2013, 244, 234-239.	4.0	61
97	Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage. RSC Advances, 2015, 5, 97427-97434.	1.7	61
98	Co ₃ O ₄ Nanospheres Embedded in a Nitrogen-Doped Carbon Framework: An Electrode with Fast Surface-Controlled Redox Kinetics for Lithium Storage. ACS Energy Letters, 2017, 2, 52-59.	8.8	61
99	Nano-SnO2 Decorated Carbon Cloth as Flexible, Self-supporting and Additive-Free Anode for Sodium/Lithium-Ion Batteries. Acta Metallurgica Sinica (English Letters), 2021, 34, 390-400.	1.5	61
100	Oxygenâ€Deficient Titanium Dioxide Nanosheets as More Effective Polysulfide Reservoirs for Lithiumâ€Sulfur Batteries. Chemistry - A European Journal, 2017, 23, 9666-9673.	1.7	60
101	Allâ€Climate and Ultrastable Dualâ€lon Batteries with Long Life Achieved via Synergistic Enhancement of Cathode and Anode Interfaces. Advanced Functional Materials, 2022, 32, .	7.8	60
102	A Novel Layered Sedimentary Rocks Structure of the Oxygen-Enriched Carbon for Ultrahigh-Rate-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 4233-4241.	4.0	58
103	Advanced flame-retardant electrolyte for highly stabilized K-ion storage in graphite anode. Science Bulletin, 2022, 67, 1581-1588.	4.3	57
104	Three-dimensional carbon nanotube networks enhanced sodium trimesic: a new anode material for sodium ion batteries and Na-storage mechanism revealed by ex situ studies. Journal of Materials Chemistry A, 2017, 5, 16622-16629.	5.2	54
105	Emission from Trions in Carbon Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 2956-2962.	1.5	53
106	Romanechite-structured Na _{0.31} MnO _{1.9} nanofibers as high-performance cathode material for a sodium-ion battery. Chemical Communications, 2015, 51, 14848-14851.	2.2	53
107	An FeP@C nanoarray vertically grown on graphene nanosheets: an ultrastable Li-ion battery anode with pseudocapacitance-boosted electrochemical kinetics. Nanoscale, 2019, 11, 1304-1312.	2.8	53
108	A new strategy for developing superior electrode materials for advanced batteries: using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Nanoscale Horizons, 2016, 1, 496-501.	4.1	51

#	Article	IF	CITATIONS
109	Waste-to-wealth: low-cost hard carbon anode derived from unburned charcoal with high capacity and long cycle life for sodium-ion/lithium-ion batteries. Electrochimica Acta, 2020, 361, 137041.	2.6	51
110	Diffusion induced concave Co3O4@CoFe2O4 hollow heterostructures for high performance lithium ion battery anode. Energy Storage Materials, 2016, 4, 145-153.	9.5	50
111	Multiple heterointerfaces boosted de-/sodiation kinetics towards superior Na storage and Na-Ion full battery. Journal of Materials Chemistry A, 2018, 6, 6578-6586.	5.2	50
112	Recycled LiMn2O4 from the spent lithium ion batteries as cathode material for sodium ion batteries: Electrochemical properties, structural evolution and electrode kinetics. Electrochimica Acta, 2019, 320, 134626.	2.6	50
113	Synergistic mediation of sulfur conversion in lithium–sulfur batteries by a Gerber tree-like interlayer with multiple components. Journal of Materials Chemistry A, 2017, 5, 11255-11262.	5.2	49
114	Porous cubes constructed by cobalt oxide nanocrystals with graphene sheet coatings for enhanced lithium storage properties. Nanoscale, 2016, 8, 7688-7694.	2.8	48
115	2D few-layer iron phosphosulfide: a self-buffer heterophase structure induced by irreversible breakage of P–S bonds for high-performance lithium/sodium storage. Journal of Materials Chemistry A, 2019, 7, 1529-1538.	5.2	48
116	A vertical and cross-linked Ni(OH) ₂ network on cellulose-fiber covered with graphene as a binder-free electrode for advanced asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 19077-19084.	5.2	47
117	Hierarchically Porous N-Doped Carbon Nanosheets Derived From Grapefruit Peels for High-Performance Supercapacitors. ChemistrySelect, 2016, 1, 1441-1447.	0.7	47
118	Enhanced electrode kinetics and properties via anionic regulation in polyanionic Na3+xV2(PO4)3â^'x(P2O7)x cathode material. Green Energy and Environment, 2022, 7, 763-771.	4.7	47
119	A unique co-recovery strategy of cathode and anode from spent LiFePO4 battery. Science China Materials, 2022, 65, 637-645.	3.5	46
120	Robust three-dimensional carbon conductive network in a NaVPO ₄ F cathode used for superior high-rate and ultralong-lifespan sodium-ion full batteries. Journal of Materials Chemistry A, 2020, 8, 17454-17462.	5.2	45
121	Carbon/Binderâ€Free NiO@NiO/NF with In Situ Formed Interlayer for Highâ€Areal apacity Lithium Storage. Advanced Energy Materials, 2019, 9, 1803690.	10.2	44
122	Assembly of MnCO 3 nanoplatelets synthesized at low temperature on graphene to achieve anode materials with high rate performance for lithium-ion batteries. Electrochimica Acta, 2016, 215, 267-275.	2.6	43
123	Precisely controlled preparation of an advanced Na ₃ V ₂ (PO ₄) ₂ O ₂ F cathode material for sodium ion batteries: the optimization of electrochemical properties and electrode kinetics. Inorganic Chemistry Frontiers. 2019. 6. 988-995.	3.0	43
124	Temperatureâ€Dependent Electrochemical Properties and Electrode Kinetics of Na ₃ V ₂ (PO ₄) ₂ O ₂ F Cathode for Sodiumâ€lon Batteries with High Energy Density. Chemistry - A European Journal, 2020, 26, 7823-7830.	1.7	43
125	Graphene Nanosheets Suppress the Growth of Sb Nanoparticles in an Sb/C Nanocomposite to Achieve Fast Na Storage. Particle and Particle Systems Characterization, 2016, 33, 204-211.	1.2	42
126	Egg yolk-derived carbon: Achieving excellent fluorescent carbon dots and high performance lithium-ion batteries. Journal of Alloys and Compounds, 2018, 746, 567-575.	2.8	42

#	Article	IF	CITATIONS
127	MnS@N,S Coâ€Doped Carbon Core/Shell Nanocubes: Sulfurâ€Bridged Bonds Enhanced Naâ€Storage Properties Revealed by In Situ Raman Spectroscopy and Transmission Electron Microscopy. Small, 2020, 16, e2003001.	5.2	42
128	Full Protection for Graphene-Incorporated Micro-/Nanocomposites Containing Ultra-small Active Nanoparticles: the Best Li-Storage Properties. Particle and Particle Systems Characterization, 2015, 32, 1020-1027.	1.2	41
129	Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage properties?. Energy Storage Materials, 2016, 5, 214-222.	9.5	41
130	Homogeneous Li ⁺ Flux Distribution Enables Highly Stable and Temperatureâ€Tolerant Lithium Anode. Advanced Functional Materials, 2021, 31, 2102158.	7.8	41
131	Layered g-C ₃ N ₄ @Reduced Graphene Oxide Composites as Anodes with Improved Rate Performance for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30330-30336.	4.0	40
132	Stateâ€ofâ€ŧheâ€Art Progress in Diverse Black Phosphorusâ€Based Structures: Basic Properties, Synthesis, Stability, Photo―and Electrocatalysisâ€Driven Energy Conversion. Advanced Functional Materials, 2021, 31, 2005197.	7.8	40
133	The in-situ-prepared micro/nanocomposite composed of Sb and reduced graphene oxide as superior anode for sodium-ion batteries. Journal of Alloys and Compounds, 2016, 672, 72-78.	2.8	39
134	Tunable Co ₃ O ₄ hollow structures (from yolk–shell to multi-shell) and their Li storage properties. Journal of Materials Chemistry A, 2017, 5, 12757-12761.	5.2	39
135	Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte. Journal of Materials Chemistry A, 2018, 6, 24979-24987.	5.2	39
136	Rationally designed nitrogen-doped yolk-shell Fe7Se8/Carbon nanoboxes with enhanced sodium storage in half/full cells. Carbon, 2020, 166, 175-182.	5.4	39
137	A novel approach to prepare Si/C nanocomposites with yolk–shell structures for lithium ion batteries. RSC Advances, 2014, 4, 36218-36225.	1.7	37
138	Sodium-based dual-ion batteries via coupling high-capacity selenium/graphene anode with high-voltage graphite cathode. Chinese Chemical Letters, 2020, 31, 2314-2318.	4.8	37
139	Research Progresses on Vanadium-based Cathode Materials for Aqueous Zinc-Ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	37
140	Toward High Temperature Sodium Metal Batteries via Regulating the Electrolyte/Electrode Interfacial Chemistries. ACS Energy Letters, 2022, 7, 2032-2042.	8.8	37
141	(PO4)3â^' polyanions doped LiNi1/3Co1/3Mn1/3O2: An ultrafast-rate, long-life and high-voltage cathode material for Li-ion rechargeable batteries. Electrochimica Acta, 2016, 201, 8-19.	2.6	36
142	Porous Carbon with Willow-Leaf-Shaped Pores for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 42699-42707.	4.0	36
143	Magnesium-regulated oxygen vacancies of cobalt-nickel layered double hydroxide nanosheets for ultrahigh performance asymmetric supercapacitors. Journal of Colloid and Interface Science, 2022, 612, 772-781.	5.0	36
144	Tailoring Coral-Like Fe ₇ Se ₈ @C for Superior Low-Temperature Li/Na-Ion Half/Full Batteries: Synthesis, Structure, and DFT Studies. ACS Applied Materials & Interfaces, 2019, 11, 47886-47893.	4.0	35

#	Article	IF	CITATIONS
145	Pseudocapacitive sodium storage of Fe1â^'xS@N-doped carbon for low-temperature operation. Science China Materials, 2020, 63, 505-515.	3.5	35
146	[Co ₃ (μ ₃ -O)]-Based Metal–Organic Frameworks as Advanced Anode Materials in K- and Na-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46902-46908.	4.0	34
147	LiV ₃ O ₈ nanorods as cathode materials for high-power and long-life rechargeable lithium-ion batteries. RSC Advances, 2014, 4, 25494-25501.	1.7	33
148	Improve the Overall Performances of Lithium Ion Batteries by a Facile Method of Modifying the Surface of Cu Current Collector with Carbon. Electrochimica Acta, 2015, 176, 604-609.	2.6	33
149	Hierarchical GeP ₅ /Carbon Nanocomposite with Dual-Carbon Conductive Network as Promising Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 36902-36909.	4.0	33
150	Enhanced working temperature of PEO-based polymer electrolyte via porous PTFE film as an efficient heat resister. Solid State Ionics, 2013, 245-246, 1-7.	1.3	32
151	Dendrite-Free Lithium Anode Enables the Lithium//Graphite Dual-Ion Battery with Much Improved Cyclic Stability. ACS Applied Energy Materials, 2019, 2, 201-206.	2.5	32
152	Hierarchical porous carbon pellicles: Electrospinning synthesis and applications as anodes for sodium-ion batteries with an outstanding performance. Carbon, 2020, 157, 308-315.	5.4	32
153	Fe3O4 nanoflakes-RGO composites: A high rate anode material for lithium-ion batteries. Applied Surface Science, 2020, 511, 145465.	3.1	32
154	Three-dimensional hierarchical Ni ₃ Se ₂ nanorod array as binder/carbon-free electrode for high-areal-capacity Na storage. Nanoscale, 2018, 10, 18942-18948.	2.8	30
155	Regulation of Cathodeâ€Electrolyte Interphase via Electrolyte Additives in Lithium Ion Batteries. Chemistry - an Asian Journal, 2020, 15, 2803-2814.	1.7	30
156	Synergistic Design of Cathode Region for the High-Energy-Density Li–S Batteries. ACS Applied Materials & Interfaces, 2016, 8, 28689-28699.	4.0	29
157	High-Rate and Long-Cycle Cathode for Sodium-Ion Batteries: Enhanced Electrode Stability and Kinetics via Binder Adjustment. ACS Applied Materials & Interfaces, 2020, 12, 47580-47589.	4.0	29
158	Template-Free Synthesis and Supercapacitance Performance of a Hierachically Porous Oxygen-Enriched Carbon Material. Journal of Nanoscience and Nanotechnology, 2011, 11, 1897-1904.	0.9	28
159	Effect of cationic and anionic substitutions on the electrochemical properties of LiNi0.5Mn1.5O4 spinel cathode materials. Electrochimica Acta, 2014, 138, 493-500.	2.6	28
160	Encapsulation of Na3(VO)2(PO4)2F into carbon nanofiber as an superior cathode material for flexible sodium-ion capacitors with high-energy-density and low-self-discharge. Journal of Power Sources, 2020, 466, 228249.	4.0	28
161	Electroluminescence and photoluminescence of Ge+-implanted SiO2 films thermally grown on crystalline silicon. Applied Physics Letters, 1997, 71, 2505-2507.	1.5	27
162	Enhancement of electrochemical performance of LiNi1/3Co1/3Mn1/3O2 by surface modification with MnO2. Journal of Alloys and Compounds, 2015, 651, 12-18.	2.8	27

#	Article	IF	CITATIONS
163	Porous Amorphous Co ₂ P/N,Bâ€Coâ€doped Carbon Composite as an Improved Anode Material for Sodiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 1395-1401.	1.7	27
164	Ultrahigh quantum efficiency photodetector and ultrafast reversible surface wettability transition of square In2O3 nanowires. Nano Research, 2017, 10, 2772-2781.	5.8	27
165	Mesoporous N-doped carbon-coated CoSe nanocrystals encapsulated in S-doped carbon nanosheets as advanced anode with ultrathin solid electrolyte interphase for high-performance sodium-ion half/full batteries. Journal of Materials Chemistry A, 2022, 10, 2113-2121.	5.2	27
166	Tetrafunctional template-assisted strategy to preciously construct co-doped Sb@C nanofiber with longitudinal tunnels for ultralong-life and high-rate sodium storage. Energy Storage Materials, 2022, 48, 90-100.	9.5	27
167	Carbon-Free Porous Zn ₂ GeO ₄ Nanofibers as Advanced Anode Materials for High-Performance Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 31722-31728.	4.0	26
168	Fabrication of boron-doped porous carbon with termite nest shape via natural macromolecule and borax to obtain lithium-sulfur/sodium-ion batteries with improved rate performance. Electrochimica Acta, 2017, 244, 86-95.	2.6	26
169	Benign Recycling of Spent Batteries towards Allâ€Solidâ€State Lithium Batteries. Chemistry - A European Journal, 2019, 25, 8975-8981.	1.7	26
170	P2-type Na2/3Mn1/2Co1/3Cu1/6O2 as advanced cathode material for sodium-ion batteries: Electrochemical properties and electrode kinetics. Journal of Alloys and Compounds, 2019, 790, 1092-1100.	2.8	26
171	Self-assembly of polyoxometalate/reduced graphene oxide composites induced by ionic liquids as a high-rate cathode for batteries: "killing two birds with one stone― Journal of Materials Chemistry A, 2018, 6, 1743-1750.	5.2	25
172	Ionic-liquid-bifunctional wrapping of ultrafine SnO ₂ nanocrystals into N-doped graphene networks: high pseudocapacitive sodium storage and high-performance sodium-ion full cells. Nanoscale, 2019, 11, 14616-14624.	2.8	25
173	High-Voltage All-Solid-State Na-Ion-Based Full Cells Enabled by All NASICON-Structured Materials. ACS Applied Materials & Interfaces, 2019, 11, 24192-24197.	4.0	25
174	Confined MoS2 growth in a unique composite matrix for ultra-stable and high-rate lithium/sodium-ion anodes. Chemical Engineering Journal, 2022, 428, 131103.	6.6	25
175	Controllable Synthesis of PbO Nano/Microstructures Using a Porous Alumina Template. Crystal Growth and Design, 2007, 7, 2665-2669.	1.4	24
176	Optical Identification of Topological Defect Types in Monolayer Arsenene by First-Principles Calculation. Journal of Physical Chemistry C, 2016, 120, 24917-24924.	1.5	24
177	Ultrafine nano-Si material prepared from NaCl-assisted magnesiothermic reduction of scalable silicate: graphene-enhanced Li-storage properties as advanced anode for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 694, 208-216.	2.8	24
178	Dendrite-free deposition on lithium anode toward long-life and high-stable Li//graphite dual-ion battery. Chemical Communications, 2019, 55, 8406-8409.	2.2	24
179	Localized Electron Density Redistribution in Fluorophosphate Cathode: Dangling Anion Regulation and Enhanced Naâ€ion Diffusivity for Sodiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, 2109694.	7.8	24
180	Enhanced Photodegradation of Methyl Orange Synergistically by Microcrystal Facet Cutting and Flexible Electrically-Conducting Channels. Journal of Physical Chemistry C, 2014, 118, 28063-28068.	1.5	23

#	Article	IF	CITATIONS
181	Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties. Journal of Power Sources, 2016, 307, 17-24.	4.0	23
182	MnWO ₄ nanoparticles as advanced anodes for lithium-ion batteries: F-doped enhanced lithiation/delithiation reversibility and Li-storage properties. Nanoscale, 2018, 10, 6832-6836.	2.8	23
183	2D Fe ₂ O ₃ nanosheets with bi-continuous pores inherited from Fe-MOF precursors: an advanced anode material for Li-ion half/full batteries. 2D Materials, 2019, 6, 045022.	2.0	23
184	A Practical Li-Ion Full Cell with a High-Capacity Cathode and Electrochemically Exfoliated Graphene Anode: Superior Electrochemical and Low-Temperature Performance. ACS Applied Energy Materials, 2019, 2, 486-492.	2.5	23
185	Research Progresses on Interfaces in Solid tate Sodium Batteries: A Topic Review. Advanced Materials Interfaces, 2020, 7, 2001444.	1.9	23
186	Addressing the Low Solubility of a Solid Electrolyte Interphase Stabilizer in an Electrolyte by Composite Battery Anode Design. ACS Applied Materials & Interfaces, 2021, 13, 13354-13361.	4.0	23
187	Aliovalentâ€Ionâ€Induced Lattice Regulation Based on Charge Balance Theory: Advanced Fluorophosphate Cathode for Sodiumâ€Ion Full Batteries. Small, 2021, 17, e2102010.	5.2	23
188	One-dimensional core–shell motif nanowires with chemically-bonded transition metal sulfide-carbon heterostructures for efficient sodium-ion storage. Chemical Science, 2021, 12, 15054-15060.	3.7	23
189	Deciphering the Role of Fluoroethylene Carbonate towards Highly Reversible Sodium Metal Anodes. Research, 2022, 2022, 9754612.	2.8	23
190	Restraining Capacity Increase To Achieve Ultrastable Lithium Storage: Case Study of a Manganese(II) Oxide/Grapheneâ€Based Nanohybrid and Its Fullâ€Cell Performance. ChemElectroChem, 2016, 3, 1354-1359.	1.7	22
191	Effective Cathode Design of Three-Layered Configuration for High-Energy Li–S Batteries. ACS Applied Materials & Interfaces, 2018, 10, 509-516.	4.0	22
192	A plum-pudding like mesoporous SiO ₂ /flake graphite nanocomposite with superior rate performance for LIB anode materials. Physical Chemistry Chemical Physics, 2015, 17, 22893-22899.	1.3	21
193	Flexible paper electrodes constructed from Zn ₂ GeO ₄ nanofibers anchored with amorphous carbon for advanced lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 2055-2059.	5.2	21
194	Proton-Conducting Polyoxometalates as Redox Electrolytes Synergistically Boosting the Performance of Self-Healing Solid-State Supercapacitors with Polyaniline. CCS Chemistry, 2021, 3, 1649-1658.	4.6	21
195	<i>In Situ</i> Network Electrolyte Based on a Functional Polymerized Ionic Liquid with High Conductivity toward Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 14755-14765.	2.5	21
196	Sustainable development of graphitic carbon nanosheets from plastic wastes with efficient photothermal energy conversion for enhanced solar evaporation. Journal of Materials Chemistry A, 2022, 10, 19612-19617.	5.2	21
197	Electrochemical In Situ Formation of a Stable Tiâ€Based Skeleton for Improved Liâ€Storage Properties: A Case Study of Porous CoTiO ₃ Nanofibers. Chemistry - A European Journal, 2017, 23, 8712-8718.	1.7	20
198	A cation/anion-dually active metal-organic complex with 2D lamellar structure as anode material for Li/Na-ion batteries. Materials Today Energy, 2019, 13, 302-307.	2.5	20

#	Article	IF	CITATIONS
199	Microemulsion-Mediated Solvothermal Synthesis and Morphological Evolution of MnCO ₃ Nanocrystals. Journal of Nanoscience and Nanotechnology, 2006, 6, 2123-2128.	0.9	19
200	Fabrication of functionalized polysulfide reservoirs from large graphene sheets to improve the electrochemical performance of lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2015, 17, 23481-23488.	1.3	19
201	Layer-stacked Sb@graphene micro/nanocomposite with decent Na-storage, full-cell and low-temperature performances. Journal of Alloys and Compounds, 2018, 731, 881-888.	2.8	19
202	Target encapsulating NiMoO4 nanocrystals into 1D carbon nanofibers as free-standing anode material for lithium-ion batteries with enhanced cycle performance. Journal of Alloys and Compounds, 2020, 830, 154648.	2.8	19
203	Engineering Allâ€Purpose Amorphous Carbon Nanotubes with High N/O oâ€Đoping Content to Bridge the Alkaliâ€ion Batteries and Li Metal Batteries. Small, 2021, 17, e2006566.	5.2	19
204	Alkaliâ€Metalâ€Ionâ€Functionalized Graphene Oxide as a Superior Anode Material for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2016, 22, 8152-8157.	1.7	18
205	3D Hierarchical Microballs Constructed by Intertwined MnO@Nâ€doped Carbon Nanofibers towards Superior Lithiumâ€Storage Properties. Chemistry - A European Journal, 2018, 24, 9606-9611.	1.7	18
206	A sandwich nanocomposite composed of commercially available SnO and reduced graphene oxide as advanced anode materials for sodium-ion full batteries. Inorganic Chemistry Frontiers, 2021, 8, 396-404.	3.0	18
207	3 D Porous CoS ₂ Hexadecahedron Derived from MOC toward Ultrafast and Longâ€Lifespan Lithium Storage. Chemistry - A European Journal, 2018, 24, 6798-6803.	1.7	16
208	Dual arbon Enhanced FeP Nanorods Vertically Grown on Carbon Nanotubes with Pseudocapacitanceâ€Boosted Electrochemical Kinetics for Superior Lithium Storage. Advanced Electronic Materials, 2019, 5, 1900006.	2.6	16
209	Recent progresses and challenges of metal sulfides as advanced anode materials in rechargeable sodium-ion batteries. JPhys Materials, 2020, 3, 042004.	1.8	16
210	Electrochemical performance improvement of N-doped graphene as electrode materials for supercapacitors by optimizing the functional groups. RSC Advances, 2015, 5, 12583-12591.	1.7	15
211	Universal etherâ€based electrolyte chemistry towards highâ€voltage and longâ€life Naâ€ion full batteries. Angewandte Chemie, 0, , .	1.6	15
212	Heterogeneous interface in hollow ferroferric oxide/ iron phosphide@carbon spheres towards enhanced Li storage. Journal of Colloid and Interface Science, 2022, 617, 442-453.	5.0	15
213	An <i>in situ</i> â€Fabricated Composite Polymer Electrolyte Containing Largeâ€Anion Lithium Salt for Allâ€Solidâ€State LiFePO ₄ /Li Batteries. ChemElectroChem, 2017, 4, 2293-2299.	1.7	14
214	N-doped Porous Host with Lithiophilic Co Nanoparticles Implanted into 3D Carbon Nanotubes for Dendrite-Free Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 12871-12881.	2.5	14
215	Enabling high-performance all-solid-state hybrid-ion batteries with a PEO-based electrolyte. Chemical Communications, 2022, 58, 6813-6816.	2.2	14
216	Synthesis of Nanostructured Fibers Consisting of Carbon Coated Mn ₃ O ₄ Nanoparticles and Their Application in Electrochemical Capacitors. Journal of Nanoscience and Nanotechnology, 2010, 10, 8158-8163.	0.9	12

#	Article	IF	CITATIONS
217	Hierarchically porous nanosheets-constructed 3D carbon network for ultrahigh-capacity supercapacitor and battery anode. Nanotechnology, 2019, 30, 214002.	1.3	12
218	Micro/Nanoengineered αâ€Fe 2 O 3 Nanoaggregate Conformably Enclosed by Ultrathin Nâ€Doped Carbon Shell for Ultrastable Lithium Storage and Insight into Phase Evolution Mechanism. Chemistry - A European Journal, 2020, 26, 853-862.	1.7	12
219	Regulating Li nucleation/growth via implanting lithiophilic seeds onto flexible scaffolds enables highly stable Li metal anode. Journal of Colloid and Interface Science, 2022, 609, 606-616.	5.0	12
220	Magnetic iron nitride nanodendrites. Journal of Solid State Chemistry, 2005, 178, 2390-2393.	1.4	11
221	A study of the electrochemical behavior at low temperature of the Li ₃ V ₂ (PO ₄) ₃ cathode material for Li-ion batteries. New Journal of Chemistry, 2015, 39, 9617-9626.	1.4	11
222	Controlling Electron Spin Decoherence in Nd-based Complexes via Symmetry Selection. IScience, 2020, 23, 100926.	1.9	11
223	Covalent Organic Framework with Highly Accessible Carbonyls and π ation Effect for Advanced Potassiumâ€lon Batteries. Angewandte Chemie, 2022, 134, e202117661.	1.6	11
224	Sb&Sb ₂ O ₃ @C-enhanced flexible carbon cloth as an advanced self-supporting anode for sodium-ion batteries. New Journal of Chemistry, 2020, 44, 4719-4725.	1.4	10
225	<i>In Situ</i> Growth of 3D Lamellar Mn(OH) ₂ on CuO-Coated Carbon Cloth for Flexible Asymmetric Supercapacitors with a High Working Voltage of 2.4 V. ACS Sustainable Chemistry and Engineering, 2021, 9, 13385-13394.	3.2	10
226	Regulating the Li Nucleation/Growth Behavior via Cu ₂ O Nanowire Array and Artificial Solid Electrolyte Interphase toward Highly Stable Li Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 23588-23596.	4.0	10
227	Ion sieve membrane: Homogenizing Li+ flux and restricting polysulfides migration enables long life and highly stable Li-S battery. Journal of Colloid and Interface Science, 2022, 627, 730-738.	5.0	10
228	Polypyrrole nanosphere embedded in wrinkled graphene layers to obtain cross-linking network for high performance supercapacitors. Electrochimica Acta, 2015, 184, 179-185.	2.6	9
229	Adjustable and pseudocapacitance-prompted Li storage via the controlled preparation of nanocomposites with 0D-2D carbon networks. Electrochimica Acta, 2018, 268, 323-331.	2.6	9
230	Effective Recycling of the Whole Cathode in Spent Lithium Ion Batteries: From the Widely Used Oxides to High-Energy/Stable Phosphates. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	9
231	Advanced cathode materials in dualâ€ion batteries: Progress and prospect. Electrochemical Science Advances, 2022, 2, e2100127.	1.2	9
232	Nanoconstruction and nanoeffect of phosphate-based cathode materials for advanced sodium-ion batteries. Nano Futures, 2020, 4, 042001.	1.0	9
233	An Advanced Highâ€Entropy Fluorophosphate Cathode for Sodiumâ€Ion Batteries with Increased Working Voltage and Energy Density (Adv. Mater. 14/2022). Advanced Materials, 2022, 34, .	11.1	9
234	Molten sodium-induced graphitization towards highly crystalline and hierarchical porous graphene frameworks. 2D Materials, 2015, 2, 035016.	2.0	8

#	Article	IF	CITATIONS
235	Hierarchicallyâ€Porous Carbon Derived from a Largeâ€Scale Ironâ€based Organometallic Complex for Versatile Energy Storage. ChemSusChem, 2016, 9, 1483-1489.	3.6	8
236	Micron-scaled MoS2/N-C particles with embedded nano-MoS2: A high-rate anode material for enhanced lithium storage. Applied Surface Science, 2019, 486, 519-526.	3.1	8
237	Pseudocapacitive Lithium Storage of Cauliflowerâ€Like CoFe ₂ O ₄ for Lowâ€Temperature Battery Operation. Chemistry - A European Journal, 2020, 26, 13652-13658.	1.7	8
238	A new polyoxometalate-resorcin[4]arene-based framework as an efficient anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 835, 155314.	2.8	8
239	Robust Electrodes for Flexible Energy Storage Devices Based on Bimetallic Encapsulated Core–Multishell Structures. Advanced Science, 2021, 8, e2100911.	5.6	8
240	Manipulation of Molecular Qubits by Isotope Effect on Spin Dynamics. CCS Chemistry, 2021, 3, 2548-2556.	4.6	8
241	A Poreâ€Forming Strategy Toward Porous Carbonâ€Based Substrates for High Performance Flexible Lithium Metal Full Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	8
242	Uniform Zn ²⁺ Flux Distribution Achieved by an Artificial Three-Dimensional Framework: The Enhanced Ion-Transfer Kinetics for Long-Life and Dendrite-Free Zn Anodes. ACS Applied Materials & Interfaces, 2022, 14, 23558-23569.	4.0	8
243	Microemulsion-based solvothermal synthesis of aluminium orthophosphate nanocrystals. Nanotechnology, 2005, 16, 2129-2133.	1.3	7
244	Twinned TATB nanobelts: synthesis, characterization, and formation mechanism. CrystEngComm, 2011, 13, 6658.	1.3	7
245	Double arbon Enhanced TiO 2 Nanotubes as Highly Improved Anodes for Sodiumâ€lon Batteries. ChemistrySelect, 2020, 5, 3820-3827.	0.7	7
246	3D Carbon Networks Constructed NaVPO4F/C/rGO as a Cathode Material for High-Performance Sodium-Ion Batteries. Frontiers in Energy Research, 2020, 8, .	1.2	7
247	Sustainable and Robust Graphene Cellulose Paper Decorated with Lithiophilic Au Nanoparticles to Enable Dendriteâ€free and Highâ€Power Lithium Metal Anode. Chemistry - A European Journal, 2021, 27, 8168-8177.	1.7	7
248	Sponge-like NaFe ₂ PO ₄ (SO ₄) ₂ @rGO as a high-performance cathode material for sodium-ion batteries. New Journal of Chemistry, 2021, 45, 4854-4859.	1.4	7
249	Pseudocapacitive sodium storage in a new brand foveolate TiO ₂ @MoSe ₂ nanocomposite for high-performance Na-ion hybrid capacitors. Journal of Materials Chemistry A, 2021, 9, 24419-24425.	5.2	7
250	Disordered mesoporous polyacenes/sulfur nanocomposites: Superior cathode materials for lithium-sulfur batteries. Journal of Alloys and Compounds, 2017, 693, 1045-1051.	2.8	6
251	<i>In situ</i> chemically encapsulated and controlled SnS ₂ nanocrystal composites for durable lithium/sodium-ion batteries. Dalton Transactions, 2020, 49, 15874-15882.	1.6	6
252	Waste utilization of crab shell: 3D hierarchical porous carbon towards high-performance Na/Li storage. New Journal of Chemistry, 2021, 45, 19439-19445.	1.4	6

#	Article	IF	CITATIONS
253	Electrolyte Chemistry Towards Improved Cycling Stability in Naâ€Based Dualâ€Ion Batteries with Highâ€Power/Energy Storage. Batteries and Supercaps, 2021, 4, 1647.	2.4	6
254	A low-surface-energy design to allogeneic sulfide heterostructures anchored on ultrathin graphene sheets for fast sodium storage. Chemical Engineering Journal, 2022, 432, 134195.	6.6	6
255	Synthesis of Mg5 (CO3)4 (OH)2 • 4H2O with Flower-like Micro-structure and Its Catalytic Activity for Transesterification of Dimethyl Carbonate with Phenol. Chemical Research in Chinese Universities, 2007, 23, 641-645.	1.3	5
256	Targeted Construction of Amorphous MoS _{<i>x</i>} with an Inherent Chain Molecular Structure for Improved Pseudocapacitive Lithiumâ€ion Response. Chemistry - A European Journal, 2019, 25, 15173-15181.	1.7	5
257	A carbon-incorporated LiMnBO3/boron oxide composite as advanced anode material for lithium ion batteries. Journal of Alloys and Compounds, 2019, 772, 105-111.	2.8	5
258	Full pseudocapacitive behavior hypoxic graphene for ultrafast and ultrastable sodium storage. Journal of Materials Chemistry A, 2020, 8, 9911-9918.	5.2	5
259	Frontispiece: Covalent Organic Framework with Highly Accessible Carbonyls and Ï€â€Cation Effect for Advanced Potassiumâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
260	Advanced Lithium Primary Batteries: Key Materials, Research Progresses and Challenges. Chemical Record, 2022, 22, e202200081.	2.9	5
261	Dual anionic substitution engineering for an advanced NASICON phosphate cathode in sodium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 5671-5678.	3.2	4
262	Boron-doped Sb/SbO ₂ @rGO composites with tunable components and enlarged lattice spacing for high-rate sodium-ion batteries. Journal Physics D: Applied Physics, 2021, 54, 315505.	1.3	4
263	Preparation of ZnO Nanostructures by Thermal Degradation of Zinc Alginate Fibers. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2008, 24, 2179-2184.	2.2	4
264	CdS:Mn–Polysulfido Complex Nanoclusters with H ₂ O ₂ -Dependent and Site-Specific Color Changes. Journal of Physical Chemistry C, 2014, 118, 11085-11092.	1.5	3
265	The Improved Interfacial and Thermal Stability of Nickelâ€Rich LiNi _{0.85} Co _{0.10} Mn _{0.05} O ₂ Cathode in Liâ€Ion Battery via Perovskite La ₄ NiLiO ₈ Coating. ChemNanoMat, 2021, 7, 672-681.	1.5	3
266	Sodiumâ€Ion Batteries: Selfâ€Supporting, Flexible, Additiveâ€Free, and Scalable Hard Carbon Paper Selfâ€Interwoven by 1D Microbelts: Superb Room/Lowâ€Temperature Sodium Storage and Working Mechanism (Adv. Mater. 40/2019). Advanced Materials, 2019, 31, 1970288.	11.1	2
267	Anderson localization and multifractal spectrum at the transition point in a two-dimensional non-Hermitian All†system. Journal of Physics Condensed Matter, 2022, , .	0.7	2
268	3D Ordered Porous Hybrid of ZnSe/ <i>N</i> â€doped Carbon with Anomalously High Na ⁺ Mobility and Ultrathin Solid Electrolyte Interphase for Sodiumâ€ion Batteries (Adv. Funct. Mater.) Tj ETQq0 0 0 r	gB 7. ≱Over	loc b 10 Tf 50
269	Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3: Large-Scale Synthesis, Formation Mechanism, and Properties ChemInform, 2005, 36, no.	0.1	1

Flexible Batteries: Flexible Na/Kâ€lon Full Batteries from the Renewable Cotton Cloth–Derived Stable, Lowâ€Cost, and Binderâ€Free Anode and Cathode (Adv. Energy Mater. 38/2019). Advanced Energy Materials, 10.2 1 2019, 9, 1970149.

#	Article	IF	CITATIONS
271	Lithium–Sulfur Batteries: Compactly Coupled Nitrogenâ€Doped Carbon Nanosheets/Molybdenum Phosphide Nanocrystal Hollow Nanospheres as Polysulfide Reservoirs for Highâ€Performance Lithium–Sulfur Chemistry (Small 40/2019). Small, 2019, 15, 1970216.	5.2	1
272	Frontispiz: Covalent Organic Framework with Highly Accessible Carbonyls and π ation Effect for Advanced Potassiumâ€ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	1
273	Natural ore molybdenite as a high-capacity and cheap anode material for advanced lithium-ion capacitors. Nanotechnology, 2022, 33, 255401.	1.3	1
274	Battery Electrodes: Self-Wound Composite Nanomembranes as Electrode Materials for Lithium Ion Batteries (Adv. Mater. 41/2010). Advanced Materials, 2010, 22, n/a-n/a.	11.1	0
275	Liâ€ion Batteries: Multifunctional 0D–2D Ni ₂ P Nanocrystals–Black Phosphorus Heterostructure (Adv. Energy Mater. 2/2017). Advanced Energy Materials, 2017, 7, .	10.2	0
276	Sodiumâ€lon Batteries: Isostructural and Multivalent Anion Substitution toward Improved Phosphate Cathode Materials for Sodiumâ€lon Batteries (Small 16/2020). Small, 2020, 16, 2070090.	5.2	0
277	Preparation and Electrochemical Properties of LiMn0.8Fe0.2PO4/C Nanocomposite. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 1248-1254.	0.6	0
278	Localized Electron Density Redistribution in Fluorophosphate Cathode: Dangling Anion Regulation and Enhanced Naâ€ion Diffusivity for Sodiumâ€ion Batteries (Adv. Funct. Mater. 4/2022). Advanced Functional Materials, 2022, 32, .	7.8	0