Jingchuan Xue

List of Publications by Citations

Source: https://exaly.com/author-pdf/7693356/jingchuan-xue-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,750 25 41 49 h-index g-index citations papers 2,244 51 7.5 5.31 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
49	Urinary levels of endocrine-disrupting chemicals, including bisphenols, bisphenol A diglycidyl ethers, benzophenones, parabens, and triclosan in obese and non-obese Indian children. <i>Environmental Research</i> , 2015 , 137, 120-8	7.9	167
48	Urinary biomarkers of exposure to 57 xenobiotics and its association with oxidative stress in a population in Jeddah, Saudi Arabia. <i>Environmental Research</i> , 2016 , 150, 573-581	7.9	149
47	Occurrence and estrogenic potency of eight bisphenol analogs in sewage sludge from the U.S. EPA targeted national sewage sludge survey. <i>Journal of Hazardous Materials</i> , 2015 , 299, 733-9	12.8	130
46	Urinary Concentrations of Bisphenols and Their Association with Biomarkers of Oxidative Stress in People Living Near E-Waste Recycling Facilities in China. <i>Environmental Science & Education (China)</i> 2016, 50, 4045-53	10.3	121
45	Bisphenols, Benzophenones, and Bisphenol A Diglycidyl Ethers in Textiles and Infant Clothing. <i>Environmental Science & Environmental Science & Environ</i>	10.3	95
44	Exposure to bisphenols and phthalates and association with oxidant stress, insulin resistance, and endothelial dysfunction in children. <i>Pediatric Research</i> , 2017 , 81, 857-864	3.2	70
43	A pilot study on the assessment of trace organic contaminants including pharmaceuticals and personal care products from on-site wastewater treatment systems along Skaneateles Lake in New York State, USA. <i>Water Research</i> , 2015 , 72, 28-39	12.5	67
42	Trophic Magnification of Parabens and Their Metabolites in a Subtropical Marine Food Web. <i>Environmental Science & Environmental Science & Environment</i>	10.3	57
41	Accumulation profiles of parabens and their metabolites in fish, black bear, and birds, including bald eagles and albatrosses. <i>Environment International</i> , 2016 , 94, 546-553	12.9	53
40	Mass flows and removal of eight bisphenol analogs, bisphenol A diglycidyl ether and its derivatives in two wastewater treatment plants in New York State, USA. <i>Science of the Total Environment</i> , 2019 , 648, 442-449	10.2	49
39	Urinary levels of triclosan and triclocarban in several Asian countries, Greece and the USA: Association with oxidative stress. <i>Environmental Research</i> , 2018 , 160, 91-96	7.9	48
38	Occurrence of bisphenols, bisphenol A diglycidyl ethers (BADGEs), and novolac glycidyl ethers (NOGEs) in indoor air from Albany, New York, USA, and its implications for inhalation exposure. <i>Chemosphere</i> , 2016 , 151, 1-8	8.4	47
37	Elevated Accumulation of Parabens and their Metabolites in Marine Mammals from the United States Coastal Waters. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	43
36	Widespread occurrence and accumulation of bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE) and their derivatives in human blood and adipose fat. <i>Environmental Science & Environmental Science & En</i>	10.3	43
35	METLIN MS molecular standards database: a broad chemical and biological resource. <i>Nature Methods</i> , 2020 , 17, 953-954	21.6	43
34	Gut microbiome disruption altered the biotransformation and liver toxicity of arsenic in mice. <i>Archives of Toxicology</i> , 2019 , 93, 25-35	5.8	39
33	The occurrence of bisphenol plasticizers in paired dust and urine samples and its association with oxidative stress. <i>Chemosphere</i> , 2019 , 216, 472-478	8.4	39

32	Occurrence of and exposure to benzothiazoles and benzotriazoles from textiles and infant clothing. <i>Science of the Total Environment</i> , 2017 , 592, 91-96	10.2	38
31	Serum Metabolomics Identifies Altered Bioenergetics, Signaling Cascades in Parallel with Exposome Markers in Crohn's Disease. <i>Molecules</i> , 2019 , 24,	4.8	32
30	Bisphenol A (BPA) in the serum of pet dogs following short-term consumption of canned dog food and potential health consequences of exposure to BPA. <i>Science of the Total Environment</i> , 2017 , 579, 18	304 ⁻ 181	14 ³¹
29	Benzothiazoles in indoor air from Albany, New York, USA, and its implications for inhalation exposure. <i>Journal of Hazardous Materials</i> , 2016 , 311, 37-42	12.8	31
28	Occurrence of benzophenone-3 in indoor air from Albany, New York, USA, and its implications for inhalation exposure. <i>Science of the Total Environment</i> , 2015 , 537, 304-8	10.2	28
27	Urinary concentrations of environmental phenols and their association with type 2 diabetes in a population in Jeddah, Saudi Arabia. <i>Environmental Research</i> , 2018 , 166, 544-552	7.9	28
26	Lipid and Cholesterol Homeostasis after Arsenic Exposure and Antibiotic Treatment in Mice: Potential Role of the Microbiota. <i>Environmental Health Perspectives</i> , 2019 , 127, 97002	8.4	26
25	Synthetic phenolic antioxidants, including butylated hydroxytoluene (BHT), in resin-based dental sealants. <i>Environmental Research</i> , 2016 , 151, 339-343	7.9	26
24	Enhanced in-Source Fragmentation Annotation Enables Novel Data Independent Acquisition and Autonomous METLIN Molecular Identification. <i>Analytical Chemistry</i> , 2020 , 92, 6051-6059	7.8	21
23	Studies on the solidification mechanisms of Ni and Cd in cement clinker during cement kiln co-processing of hazardous wastes. <i>Construction and Building Materials</i> , 2014 , 57, 138-143	6.7	21
22	Occurrence of Bisphenol A Diglycidyl Ethers (BADGEs) and Novolac Glycidyl Ethers (NOGEs) in Archived Biosolids from the U.S. EPA's Targeted National Sewage Sludge Survey. <i>Environmental Science & Environmental Science & En</i>	10.3	19
21	Chronic Arsenic Exposure Induces Oxidative Stress and Perturbs Serum Lysolipids and Fecal Unsaturated Fatty Acid Metabolism. <i>Chemical Research in Toxicology</i> , 2019 , 32, 1204-1211	4	18
20	Individual susceptibility to arsenic-induced diseases: the role of host genetics, nutritional status, and the gut microbiome. <i>Mammalian Genome</i> , 2018 , 29, 63-79	3.2	16
19	Tissue-Specific Accumulation and Body Burden of Parabens and Their Metabolites in Small Cetaceans. <i>Environmental Science & Environmental Science & En</i>	10.3	16
18	Resin-based dental sealants as a source of human exposure to bisphenol analogues, bisphenol A diglycidyl ether, and its derivatives. <i>Environmental Research</i> , 2018 , 162, 35-40	7.9	15
17	Isobaric Labeling Quantitative Metaproteomics for the Study of Gut Microbiome Response to Arsenic. <i>Journal of Proteome Research</i> , 2019 , 18, 970-981	5.6	15
16	Towards Mass Spectrometry-Based Chemical Exposome: Current Approaches, Challenges, and Future Directions. <i>Toxics</i> , 2019 , 7,	4.7	14
15	Occurrence of benzotriazoles (BTRs) in indoor air from Albany, New York, USA, and its implications for inhalation exposure. <i>Toxicological and Environmental Chemistry</i> , 2017 , 99, 402-414	1.4	13

14	Quantitative proteomics reveals systematic dysregulations of liver protein metabolism in sucralose-treated mice. <i>Journal of Proteomics</i> , 2019 , 196, 1-10	3.9	11
13	Novel Finding of Widespread Occurrence and Accumulation of Bisphenol A Diglycidyl Ethers (BADGEs) and Novolac Glycidyl Ethers (NOGEs) in Marine Mammals from the United States Coastal Waters. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	11
12	Serum Metabolomics Reveals That Gut Microbiome Perturbation Mediates Metabolic Disruption Induced by Arsenic Exposure in Mice. <i>Journal of Proteome Research</i> , 2019 , 18, 1006-1018	5.6	11
11	Bisphenol-A in breast adipose tissue of breast cancer cases and controls. <i>Environmental Research</i> , 2018 , 167, 735-738	7.9	11
10	Effects of High-Butterfat Diet on Embryo Implantation in Female Rats Exposed to Bisphenol A. <i>Biology of Reproduction</i> , 2015 , 93, 147	3.9	8
9	Bioaccumulation of Methyl Siloxanes in Common Carp (Cyprinus carpio) and in an Estuarine Food Web in Northeastern China. <i>Archives of Environmental Contamination and Toxicology</i> , 2019 , 76, 496-507	3.2	7
8	Metabolite Profiling of the Gut Microbiome in Mice with Dietary Administration of Black Raspberries. <i>ACS Omega</i> , 2020 , 5, 1318-1325	3.9	6
7	Dietary administration of black raspberries modulates arsenic biotransformation and reduces urinary 8-oxo-2Fdeoxyguanosine in mice. <i>Toxicology and Applied Pharmacology</i> , 2019 , 377, 114633	4.6	3
6	Detection of gut microbiota and pathogen produced N-acyl homoserine in host circulation and tissues. <i>Npj Biofilms and Microbiomes</i> , 2021 , 7, 53	8.2	3
5	Single Quadrupole Multiple Fragment Ion Monitoring Quantitative Mass Spectrometry. <i>Analytical Chemistry</i> , 2021 , 93, 10879-10889	7.8	3
4	Reply to Comment on "Bioaccumulation of Methyl Siloxanes in Common Carp (Cyprinus carpio) and in an Estuarine Food Web in Northeastern China". <i>Archives of Environmental Contamination and Toxicology</i> , 2020 , 78, 174-181	3.2	2
3	Cloud-based archived metabolomics data: A resource for in-source fragmentation/annotation, meta-analysis and systems biology <i>Analytical Science Advances</i> , 2020 , 1, 70-80	1.1	1
2	Microscale investigation of arsenic distribution and species in cement product from cement kiln coprocessing wastes. <i>Scientific World Journal, The</i> , 2013 , 2013, 518676	2.2	1
1	Proteomics with Enhanced In-Source Fragmentation/Annotation: Applying XCMS-EISA Informatics and Q-MRM High-Sensitivity Quantification. <i>Journal of the American Society for Mass Spectrometry</i> , 2021 , 32, 2644-2654	3.5	1