Bryony Ariya Nayagam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7693212/publications.pdf

Version: 2024-02-01

45 papers

1,463 citations

331538 21 h-index 330025 37 g-index

46 all docs

46 docs citations

46 times ranked

1897 citing authors

#	Article	IF	CITATIONS
1	ASK1 is a novel molecular target for preventing aminoglycoside-induced hair cell death. Journal of Molecular Medicine, 2022, 100, 797-813.	1.7	3
2	Response of primary auditory neurons to stimulation with infrared light in vitro. Journal of Neural Engineering, 2021, 18, 046003.	1.8	6
3	Expression and Physiology of Voltage-Gated Sodium Channels in Developing Human Inner Ear. Frontiers in Neuroscience, 2021, 15, 733291.	1.4	2
4	Fiber-Specific Changes in White Matter Microstructure in Individuals With X-Linked Auditory Neuropathy. Ear and Hearing, 2020, 41, 1703-1714.	1.0	5
5	Electrochemical and biological characterization of thin-film platinum-iridium alloy electrode coatings: a chronic <i>in vivo</i> study. Journal of Neural Engineering, 2020, 17, 036012.	1.8	22
6	Electrochemical and biological performance of chronically stimulated conductive hydrogel electrodes. Journal of Neural Engineering, 2020, 17, 026018.	1.8	36
7	ASK1 inhibition: a therapeutic strategy with multi-system benefits. Journal of Molecular Medicine, 2020, 98, 335-348.	1.7	75
8	Thermal damage threshold of neurons during infrared stimulation. Biomedical Optics Express, 2020, 11, 2224.	1.5	16
9	Inner ear organoids derived from human pluripotent stem cells using rotary cell culture. IBRO Reports, 2019, 6, S546-S547.	0.3	0
10	Organotypic Culture of Neonatal Murine Inner Ear Explants. Frontiers in Cellular Neuroscience, 2019, 13, 170.	1.8	16
11	Generation of Vestibular Tissue-Like Organoids From Human Pluripotent Stem Cells Using the Rotary Cell Culture System. Frontiers in Cell and Developmental Biology, 2019, 7, 25.	1.8	30
12	Review: Using diffusion-weighted magnetic resonance imaging techniques to explore the microstructure and connectivity of subcortical white matter tracts in the human auditory system. Hearing Research, 2019, 377, 1-11.	0.9	6
13	A Comparison of Electrical Stimulation Levels Across Ears for Children With Sequential Bilateral Cochlear Implants. Ear and Hearing, 2019, 40, 1174-1186.	1.0	5
14	Organotypic Cocultures of Human Pluripotent Stem Cell Derived-Neurons with Mammalian Inner Ear Hair Cells and Cochlear Nucleus Slices. Stem Cells International, 2019, 2019, 1-14.	1.2	9
15	Graphene foam as a biocompatible scaffold for culturing human neurons. Royal Society Open Science, 2018, 5, 171364.	1.1	14
16	Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells. Scientific Reports, 2018, 8, 603.	1.6	38
17	Generation of Neural Organoids from Human Embryonic Stem Cells Using the Rotary Cell Culture System: Effects of Microgravity on Neural Progenitor Cell Fate. Stem Cells and Development, 2018, 27, 848-857.	1.1	33
18	Time-dependent activity of primary auditory neurons in the presence of neurotrophins and antibiotics. Hearing Research, 2017, 350, 122-132.	0.9	6

#	Article	IF	CITATIONS
19	The Auditory System. Series on Bioengineering and Biomedical Engineering, 2017, , 167-191.	0.1	О
20	Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons <i>In Vitro</i> . Stem Cells International, 2016, 2016, 1-10.	1.2	19
21	Enriched retinal ganglion cells derived from human embryonic stem cells. Scientific Reports, 2016, 6, 30552.	1.6	97
22	Stem Cells for the Replacement of Auditory Neurons. Springer Handbook of Auditory Research, 2016, , 263-286.	0.3	3
23	Cell and Gene Therapies for the Treatment of Hearing Disorders. , 2015, , 949-964.		0
24	Functional Characterization of Friedreich Ataxia iPS-Derived Neuronal Progenitors and Their Integration in the Adult Brain. PLoS ONE, 2014, 9, e101718.	1.1	27
25	Hair Cell Regeneration after ATOH1 Gene Therapy in the Cochlea of Profoundly Deaf Adult Guinea Pigs. PLoS ONE, 2014, 9, e102077.	1.1	71
26	Treating hearing disorders with cell and gene therapy. Journal of Neural Engineering, 2014, 11, 065001.	1.8	13
27	Goldâ€Nanorodâ€Assisted Nearâ€Infrared Stimulation of Primary Auditory Neurons. Advanced Healthcare Materials, 2014, 3, 1862-1868.	3.9	120
28	Directing Human Induced Pluripotent Stem Cells into a Neurosensory Lineage for Auditory Neuron Replacement. BioResearch Open Access, 2014, 3, 162-175.	2.6	38
29	Electrophysiological properties of neurosensory progenitors derived from human embryonic stem cells. Stem Cell Research, 2014, 12, 241-249.	0.3	24
30	Viability of Long-Term Gene Therapy in the Cochlea. Scientific Reports, 2014, 4, 4733.	1.6	15
31	Challenges for stem cells to functionally repair the damaged auditory nerve. Expert Opinion on Biological Therapy, 2013, 13, 85-101.	1.4	17
32	Whole Cell Patch Clamp for Investigating the Mechanisms of Infrared Neural Stimulation. Journal of Visualized Experiments, $2013,\ldots$	0.2	7
33	An In Vitro Model of Developmental Synaptogenesis Using Cocultures of Human Neural Progenitors and Cochlear Explants. Stem Cells and Development, 2013, 22, 901-912.	1.1	34
34	Hydrogel limits stem cell dispersal in the deaf cochlea: implications for cochlear implants. Journal of Neural Engineering, 2012, 9, 065001.	1.8	20
35	The Convergence of Cochlear Implantation with Induced Pluripotent Stem Cell Therapy. Stem Cell Reviews and Reports, 2012, 8, 741-754.	5.6	34
36	Human stem cells ameliorate auditory evoked responses in a model of neuropathy. Stem Cell Research and Therapy, 2012, 3, 44.	2.4	2

#	Article	IF	CITATIONS
37	A comparison of in vitro treatments for directing stem cells toward a sensory neural fate. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2012, 33, 37-46.	0.6	13
38	Combined application of brain-derived neurotrophic factor and neurotrophin-3 and its impact on spiral ganglion neuron firing properties and hyperpolarization-activated currents. Hearing Research, 2012, 291, 1-14.	0.9	25
39	Neurotrophin Gene Therapy for Sustained Neural Preservation after Deafness. PLoS ONE, 2012, 7, e52338.	1.1	46
40	The spiral ganglion: Connecting the peripheral and central auditory systems. Hearing Research, 2011, 278, 2-20.	0.9	167
41	A protocol for cryoembedding the adult guinea pig cochlea for fluorescence immunohistology. Journal of Neuroscience Methods, 2009, 176, 144-151.	1.3	41
42	Concise Review: The Potential of Stem Cells for Auditory Neuron Generation and Replacement. Stem Cells, 2007, 25, 2685-2694.	1.4	45
43	Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons. Experimental Cell Research, 2007, 313, 232-243.	1.2	69
44	Fate of Embryonic Stem Cells Transplanted into the Deafened Mammalian Cochlea. Cell Transplantation, 2006, 15, 369-380.	1.2	111
45	Survival of Partially Differentiated Mouse Embryonic Stem Cells in the Scala Media of the Guinea Pig Cochlea. JARO - Journal of the Association for Research in Otolaryngology, 2005, 6, 341-354.	0.9	83