List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7693064/publications.pdf Version: 2024-02-01

		26630	48315
225	10,293	56	88
papers	citations	h-index	g-index
222	222	222	11405
232	232	232	11485
all docs	docs citations	times ranked	citing authors
232 all docs	232 docs citations	232 times ranked	11485 citing authors

ALEYANDED RÃI/ DELE

#	Article	IF	CITATIONS
1	Association between fat-soluble vitamins and self-reported health status: a cross-sectional analysis of the MARK-AGE cohort. British Journal of Nutrition, 2022, 128, 433-443.	2.3	Ο
2	Assessing Genotoxicity of Ten Different Engineered Nanomaterials by the Novel Semi-Automated FADU Assay and the Alkaline Comet Assay. Nanomaterials, 2022, 12, 220.	4.1	9
3	DNA Damage and Radiosensitivity in Blood Cells from Subjects Undergoing 45 Days of Isolation and Confinement: An Explorative Study. Current Issues in Molecular Biology, 2022, 44, 654-669.	2.4	0
4	The burden of overweight: Higher body mass index, but not vital exhaustion, is associated with higher DNA damage and lower DNA repair capacity. DNA Repair, 2022, 114, 103323.	2.8	7
5	Culture medium-dependent isoproterenol stability and its impact on DNA strand breaks formation and repair. Chemico-Biological Interactions, 2022, 357, 109877.	4.0	1
6	DNA Methylation Analysis of Ribosomal DNA in Adults With Down Syndrome. Frontiers in Genetics, 2022, 13, 792165.	2.3	7
7	Fueling genome maintenance: On the versatile roles of NAD+Âin preserving DNA integrity. Journal of Biological Chemistry, 2022, 298, 102037.	3.4	11
8	Blood circulating miR-28-5p and let-7d-5p associate with premature ageing in Down syndrome. Mechanisms of Ageing and Development, 2022, 206, 111691.	4.6	4
9	Mitochondria are devoid of poly(ADPâ€ribose)polymeraseâ€1, but harbor its product oligo(ADPâ€ribose). Journal of Cellular Biochemistry, 2021, 122, 507-523.	2.6	4
10	Chronic senescent human mesenchymal stem cells as possible contributor to the wound healing disorder after exposure to the alkylating agent sulfur mustard. Archives of Toxicology, 2021, 95, 727-747.	4.2	5
11	Self-rated health in individuals with and without disease is associated with multiple biomarkers representing multiple biological domains. Scientific Reports, 2021, 11, 6139.	3.3	48
12	Ageing affects subtelomeric DNA methylation in blood cells from a large European population enrolled in the MARK-AGE study. GeroScience, 2021, 43, 1283-1302.	4.6	4
13	Age, Sex, and BMI Influence on Copper, Zinc, and Their Major Serum Carrier Proteins in a Large European Population Including Nonagenarian Offspring From MARK-AGE Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 2097-2106.	3.6	12
14	Age-related activity of Poly (ADP-Ribose) Polymerase (PARP) in men with localized prostate cancer. Mechanisms of Ageing and Development, 2021, 196, 111494.	4.6	4
15	Microbiome in Blood Samples From the General Population Recruited in the MARK-AGE Project: A Pilot Study. Frontiers in Microbiology, 2021, 12, 707515.	3.5	27
16	Procaine–The Controversial Geroprotector Candidate: New Insights Regarding Its Molecular and Cellular Effects. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-18.	4.0	10
17	Non-nucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy is associated with lower cell-associated HIV RNA and DNA levels compared to protease inhibitor-based therapy. ELife, 2021, 10, .	6.0	10
18	Automated screening for oxidative or methylation-induced DNA damage in human cells. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 63-72.	1.5	5

#	Article	IF	CITATIONS
19	Do low molecular weight antioxidants contribute to the Protection against oxidative damage? The interrelation between oxidative stress and low molecular weight antioxidants based on data from the MARK-AGE study. Archives of Biochemistry and Biophysics, 2021, 713, 109061.	3.0	4
20	The role of poly(ADP-ribose) polymerases in manganese exposed Caenorhabditis elegans. Journal of Trace Elements in Medicine and Biology, 2020, 57, 21-27.	3.0	21
21	Prevalence and Loads of Torquetenovirus in the European MARK-AGE Study Population. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1838-1845.	3.6	13
22	Cardiorespiratory and Neuromuscular Demand of Daily Centrifugation: Results From the 60-Day AGBRESA Bed Rest Study. Frontiers in Physiology, 2020, 11, 562377.	2.8	16
23	Medication Intake Is Associated with Lower Plasma Carotenoids and Higher Fat-Soluble Vitamins in the Cross-Sectional MARK-AGE Study in Older Individuals. Journal of Clinical Medicine, 2020, 9, 2072.	2.4	4
24	The Radioprotective Effect of Procaine and Procaine-Derived Product Gerovital H3 in Lymphocytes from Young and Aged Individuals. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-10.	4.0	6
25	PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response. Nucleic Acids Research, 2020, 48, 10015-10033.	14.5	47
26	Exploring Flow Cytometry-Based Micronucleus Scoring for Reliable Nanomaterial Genotoxicity Assessment. Chemical Research in Toxicology, 2020, 33, 2538-2549.	3.3	16
27	Real-time monitoring of PARP1-dependent PARylation by ATR-FTIRÂspectroscopy. Nature Communications, 2020, 11, 2174.	12.8	50
28	NAD+ in sulfur mustard toxicity. Toxicology Letters, 2020, 324, 95-103.	0.8	10
29	Epigenetic and redox biomarkers: Novel insights from the MARK-AGE study. Mechanisms of Ageing and Development, 2019, 177, 128-134.	4.6	5
30	The oncoprotein DEK affects the outcome of PARP1/2 inhibition during mild replication stress. PLoS ONE, 2019, 14, e0213130.	2.5	9
31	PARP1 regulates DNA damage-induced nucleolar-nucleoplasmic shuttling of WRN and XRCC1 in a toxicant and protein-specific manner. Scientific Reports, 2019, 9, 10075.	3.3	24
32	Influence of Acute Exercise on DNA Repair and PARP Activity before and after Irradiation in Lymphocytes from Trained and Untrained Individuals. International Journal of Molecular Sciences, 2019, 20, 2999.	4.1	19
33	Do people living with HIV experience greater age advancement than their HIV-negative counterparts?. Aids, 2019, 33, 259-268.	2.2	93
34	Toxicity of ionizing radiation (IR) in a human induced pluripotent stem cell (hiPSC)-derived 3D early neurodevelopmental model. Archives of Toxicology, 2019, 93, 2879-2893.	4.2	7
35	Gender- and age-dependencies of oxidative stress, as detected based on the steady state concentrations of different biomarkers in the MARK-AGE study. Redox Biology, 2019, 24, 101204.	9.0	41
36	Interactions of p53 with poly(ADP-ribose) and DNA induce distinct changes in protein structure as revealed by ATR-FTIR spectroscopy. Nucleic Acids Research, 2019, 47, 4843-4858.	14.5	20

#	Article	IF	CITATIONS
37	Nutritional Factors Modulating Alu Methylation in an Italian Sample from The Mark-Age Study Including Offspring of Healthy Nonagenarians. Nutrients, 2019, 11, 2986.	4.1	5
38	A mass spectrometric platform for the quantitation of sulfur mustard-induced nucleic acid adducts as mechanistically relevant biomarkers of exposure. Archives of Toxicology, 2019, 93, 61-79.	4.2	24
39	Antioxidants linked with physical, cognitive and psychological frailty: Analysis of candidate biomarkers and markers derived from the MARK-AGE study. Mechanisms of Ageing and Development, 2019, 177, 135-143.	4.6	29
40	Impaired PARP activity in response to the β-adrenergic receptor agonist isoproterenol. Toxicology in Vitro, 2018, 50, 29-39.	2.4	11
41	Mass spectrometric analysis of sulfur mustard-induced biomolecular adducts: Are DNA adducts suitable biomarkers of exposure?. Toxicology Letters, 2018, 293, 21-30.	0.8	19
42	The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1. Nucleic Acids Research, 2018, 46, 804-822.	14.5	79
43	DNA Hydroxymethylation Levels Are Altered in Blood Cells From Down Syndrome Persons Enrolled in the MARK-AGE Project. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 737-744.	3.6	16
44	The degree of radiation-induced DNA strand breaks is altered by acute sleep deprivation and psychological stress and is associated with cognitive performance in humans. Sleep, 2018, 41, .	1.1	21
45	AÂcombined approach of surface passivation and specific immobilization to study biomolecules by ATR-FTIR spectroscopy1. Biomedical Spectroscopy and Imaging, 2018, 7, 25-33.	1.2	13
46	Alterations of the serum N-glycan profile in female patients with Major Depressive Disorder. Journal of Affective Disorders, 2018, 234, 139-147.	4.1	22
47	Opportunities for the repurposing of PARP inhibitors for the therapy of nonâ€oncological diseases. British Journal of Pharmacology, 2018, 175, 192-222.	5.4	160
48	In memoriam Olivier Toussaint – Stress-induced premature senescence and the role of DNA damage. Mechanisms of Ageing and Development, 2018, 170, 10-12.	4.6	3
49	Zinc-Induced Metallothionein in Centenarian Offspring From a Large European Population: The MARK-AGE Project. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 745-753.	3.6	13
50	Protection against Tetanus and Diphtheria in Europe: The impact of age, gender and country of origin based on data from the MARK-AGE Study. Experimental Gerontology, 2018, 105, 109-112.	2.8	20
51	PARP1 protects from benzo[a]pyrene diol epoxide-induced replication stress and mutagenicity. Archives of Toxicology, 2018, 92, 1323-1340.	4.2	11
52	The Role of Norepinephrine and α-Adrenergic Receptors in Acute Stress-Induced Changes in Granulocytes and Monocytes. Psychosomatic Medicine, 2018, 80, 649-658.	2.0	23
53	Synergistic Effects of Weightlessness, Isoproterenol, and Radiation on DNA Damage Response and Cytokine Production in Immune Cells. International Journal of Molecular Sciences, 2018, 19, 3689.	4.1	17
54	Transient DNA damage following exposure to gold nanoparticles. Nanoscale, 2018, 10, 15723-15735.	5.6	44

#	Article	IF	CITATIONS
55	The â€~COmorBidity in Relation to AIDS' (COBRA) cohort: Design, methods and participant characteristics. PLoS ONE, 2018, 13, e0191791.	2.5	12
56	Multiparameter toxicity assessment of novel DOPO-derived organophosphorus flame retardants. Archives of Toxicology, 2017, 91, 407-425.	4.2	63
57	The NAD + precursor nicotinic acid improves genomic integrity in human peripheral blood mononuclear cells after X-irradiation. DNA Repair, 2017, 52, 12-23.	2.8	26
58	Functional interactions of WRN with PARP1 and poly(ADP-ribose). Experimental Gerontology, 2017, 94, 119-120.	2.8	0
59	Kinetics of poly(ADP-ribosyl)ation, but not PARP1 itself, determines the cell fate in response to DNA damage in vitro and in vivo. Nucleic Acids Research, 2017, 45, 11174-11192.	14.5	28
60	Quantitation of Poly(ADP-Ribose) by Isotope Dilution Mass Spectrometry. Methods in Molecular Biology, 2017, 1608, 3-18.	0.9	13
61	Associations between Specific Redox Biomarkers and Age in a Large European Cohort: The MARK-AGE Project. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	4.0	34
62	Plasma Carotenoids, Tocopherols, and Retinol in the Age-Stratified (35–74 Years) General Population: A Cross-Sectional Study in Six European Countries. Nutrients, 2016, 8, 614.	4.1	48
63	Differential cytotoxicity induced by the Titanium(IV)Salan complex Tc52 in G2-phase independent of DNA damage. BMC Cancer, 2016, 16, 469.	2.6	11
64	Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa <i>PARP1</i> knock-out cells. Nucleic Acids Research, 2016, 44, gkw859.	14.5	23
65	Age-dependent expression of <i>DNMT1</i> and <i>DNMT3B</i> in PBMCs from a large European population enrolled in the MARK-AGE study. Aging Cell, 2016, 15, 755-765.	6.7	60
66	Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences. Toxicology Letters, 2016, 244, 56-71.	0.8	29
67	Immunochemical analysis of poly(ADP-ribosyl)ation in HaCaT keratinocytes induced by the mono-alkylating agent 2-chloroethyl ethyl sulfide (CEES): Impact of experimental conditions. Toxicology Letters, 2016, 244, 72-80.	0.8	7
68	Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARK-AGE Study. Aging, 2016, 8, 1896-1922.	3.1	36
69	Stress Hormone-Mediated DNA Damage Response Implications for Cellular Senescence and Tumour Progression. Current Drug Targets, 2016, 17, 398-404.	2.1	15
70	Poly(ADP-Ribosyl)ation. , 2016, , 3631-3636.		0
71	Editorial. Mechanisms of Ageing and Development, 2015, 151, 1.	4.6	6
72	Reconfiguration of DNA methylation in aging. Mechanisms of Ageing and Development, 2015, 151, 60-70.	4.6	227

#	Article	IF	CITATIONS
73	The MARK-AGE extended database: data integration and pre-processing. Mechanisms of Ageing and Development, 2015, 151, 31-37.	4.6	4
74	Statistical strategies and stochastic predictive models for the MARK-AGE data. Mechanisms of Ageing and Development, 2015, 151, 45-53.	4.6	3
75	Antibiotics and sweeteners in the aquatic environment: biodegradability, formation of phototransformation products, and in vitro toxicity. Environmental Science and Pollution Research, 2015, 22, 18017-18030.	5.3	22
76	Quality control data of physiological and immunological biomarkers measured in serum and plasma. Mechanisms of Ageing and Development, 2015, 151, 54-59.	4.6	14
77	Multitasking Roles for Poly(ADP-ribosyl)ation in Aging and Longevity. Cancer Drug Discovery and Development, 2015, , 125-179.	0.4	1
78	MARK-AGE biomarkers of ageing. Mechanisms of Ageing and Development, 2015, 151, 2-12.	4.6	189
79	MARK-AGE population: From the human model to new insights. Mechanisms of Ageing and Development, 2015, 151, 13-17.	4.6	29
80	MARK-AGE standard operating procedures (SOPs): A successful effort. Mechanisms of Ageing and Development, 2015, 151, 18-25.	4.6	45
81	Prevention of the degeneration of human dopaminergic neurons in an astrocyte coâ€culture system allowing endogenous drug metabolism. British Journal of Pharmacology, 2015, 172, 4119-4132.	5.4	43
82	Toxicology: a discipline in need of academic anchoring—the point of view of the German Society of Toxicology. Archives of Toxicology, 2015, 89, 1881-1893.	4.2	7
83	The MARK-AGE phenotypic database: Structure and strategy. Mechanisms of Ageing and Development, 2015, 151, 26-30.	4.6	20
84	MARK-AGE data management: Cleaning, exploration and visualization of data. Mechanisms of Ageing and Development, 2015, 151, 38-44.	4.6	11
85	Molecular consequences of psychological stress in human aging. Experimental Gerontology, 2015, 68, 39-42.	2.8	19
86	Associations of subjective vitality with <scp>DNA</scp> damage, cardiovascular risk factors and physical performance. Acta Physiologica, 2015, 213, 156-170.	3.8	22
87	Structural chromosome abnormalities, increased DNA strand breaks and DNA strand break repair deficiency in dermal fibroblasts from old female human donors. Aging, 2015, 7, 110-122.	3.1	27
88	Defective mitochondrial respiration, altered dNTP pools and reduced AP endonuclease 1 activity in peripheral blood mononuclear cells of Alzheimer's disease patients. Aging, 2015, 7, 793-810.	3.1	38
89	Poly(ADP-Ribosyl)ation. , 2015, , 1-6.		0
90	The Role of Nibrin in Doxorubicin-Induced Apoptosis and Cell Senescence in Nijmegen Breakage Syndrome Patients Lymphocytes. PLoS ONE, 2014, 9, e104964.	2.5	11

#	Article	IF	CITATIONS
91	Mathematical modelling of the automated FADU assay for the quantification of DNA strand breaks and their repair in human peripheral mononuclear blood cells. BMC Biophysics, 2014, 7, 9.	4.4	9
92	Effects of Psychotherapy on DNA Strand Break Accumulation Originating from Traumatic Stress. Psychotherapy and Psychosomatics, 2014, 83, 289-297.	8.8	61
93	Mechanisms of Hg species induced toxicity in cultured human astrocytes: genotoxicity and DNA-damage response. Metallomics, 2014, 6, 662-671.	2.4	44
94	Poly(ADP â€ribose)â€mediated interplay of XPA and PARP 1 leads to reciprocal regulation of protein function. FEBS Journal, 2014, 281, 3625-3641.	4.7	59
95	Toxicological properties of the thiolated inorganic arsenic and arsenosugar metabolite thio-dimethylarsinic acid in human bladder cells. Journal of Trace Elements in Medicine and Biology, 2014, 28, 138-146.	3.0	45
96	Recalcitrant pharmaceuticals in the aquatic environment: a comparative screening study of their occurrence, formation of phototransformation products and their in vitro toxicity. Environmental Chemistry, 2014, 11, 431.	1.5	40
97	Poly(ADP-ribose): PARadigms and PARadoxes. Molecular Aspects of Medicine, 2013, 34, 1046-1065.	6.4	166
98	An automated Fpg-based FADU method for the detection of oxidative DNA lesions and screening of antioxidants. Toxicology, 2013, 310, 15-21.	4.2	14
99	Age and gender effects on DNA strand break repair in peripheral blood mononuclear cells. Aging Cell, 2013, 12, 58-66.	6.7	83
100	Molecular mechanisms of Mn induced neurotoxicity: <scp>RONS</scp> generation, genotoxicity, and <scp>DNA</scp> â€damage response. Molecular Nutrition and Food Research, 2013, 57, 1255-1269.	3.3	34
101	Quantification of Cellular Poly(ADP-ribosyl)ation by Stable Isotope Dilution Mass Spectrometry Reveals Tissue- and Drug-Dependent Stress Response Dynamics. ACS Chemical Biology, 2013, 8, 1567-1575.	3.4	50
102	High-Resolution Quantitative Metabolome Analysis of Urine by Automated Flow Injection NMR. Analytical Chemistry, 2013, 85, 5801-5809.	6.5	36
103	Poly(ADP-ribose) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation. Nature Communications, 2013, 4, 2993.	12.8	94
104	Site-Specific Noncovalent Interaction of the Biopolymer Poly(ADP-ribose) with the Werner Syndrome Protein Regulates Protein Functions. ACS Chemical Biology, 2013, 8, 179-188.	3.4	41
105	DNA damage-independent apoptosis induced by curcumin in normal resting human T cells and leukaemic Jurkat cells. Mutagenesis, 2013, 28, 411-416.	2.6	30
106	Oxytocin modulates proliferation and stress responses of human skin cells: implications for atopic dermatitis. Experimental Dermatology, 2013, 22, 399-405.	2.9	69
107	Genetic and environmental influence on DNA strand break repair: A twin study. Environmental and Molecular Mutagenesis, 2013, 54, 414-420.	2.2	15
108	N-glycosylation profiling of plasma provides evidence for accelerated physiological aging in post-traumatic stress disorder. Translational Psychiatry, 2013, 3, e320-e320.	4.8	37

#	Article	IF	CITATIONS
109	DNA Damage in Nijmegen Breakage Syndrome Cells Leads to PARP Hyperactivation and Increased Oxidative Stress. PLoS Genetics, 2012, 8, e1002557.	3.5	25
110	Upregulation of miRâ€24 is associated with a decreased DNA damage response upon etoposide treatment in highly differentiated CD8 ⁺ T cells sensitizing them to apoptotic cell death. Aging Cell, 2012, 11, 579-587.	6.7	78
111	Quantitative analysis of WRN exonuclease activity by isotope dilution mass spectrometry. Mechanisms of Ageing and Development, 2012, 133, 575-579.	4.6	5
112	Inhibition of ATM blocks the etoposide-induced DNA damage response and apoptosis of resting human T cells. DNA Repair, 2012, 11, 864-873.	2.8	48
113	Pleiotropic Cellular Functions of PARP1 in Longevity and Aging: Genome Maintenance Meets Inflammation. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-19.	4.0	97
114	Cell cycleâ€dependent cytotoxicity and mitotic spindle checkpoint dependency of investigational and approved antimitotic agents. International Journal of Cancer, 2012, 130, 798-807.	5.1	7
115	Chromatin Composition Is Changed by Poly(ADP-ribosyl)ation during Chromatin Immunoprecipitation. PLoS ONE, 2012, 7, e32914.	2.5	27
116	Induction of DNA strand breaks by dental composite components compared to X-ray exposure in human gingival fibroblasts. Archives of Toxicology, 2011, 85, 143-148.	4.2	40
117	How to kill tumor cells with inhibitors of poly(ADPâ€ribosyl)ation. International Journal of Cancer, 2011, 128, 251-265.	5.1	77
118	High-throughput analysis of DNA interstrand crosslinks in human peripheral blood mononuclear cells by automated reverse FADU assay. Toxicology, 2011, 280, 53-60.	4.2	24
119	Neuroprotection by Minocycline Caused by Direct and Specific Scavenging of Peroxynitrite. Journal of Biological Chemistry, 2011, 286, 4991-5002.	3.4	89
120	The automated FADU-assay, a potential high-throughput in vitro method for early screening of DNA breakage. ALTEX: Alternatives To Animal Experimentation, 2011, 28, 295-303.	1.5	42
121	Aging of different avian cultured cells: Lack of ROS-induced damage and quality control mechanisms. Mechanisms of Ageing and Development, 2010, 131, 48-59.	4.6	33
122	Validation of suitable internal control genes for expression studies in aging. Mechanisms of Ageing and Development, 2010, 131, 89-95.	4.6	60
123	Enzyme characteristics of recombinant poly(ADP-ribose) polymerases-1 of rat and human origin mirror the correlation between cellular poly(ADP-ribosyl)ation capacity and species-specific life span. Mechanisms of Ageing and Development, 2010, 131, 366-369.	4.6	30
124	Inflammatory and age-related pathologies in mice with ectopic expression of human PARP-1. Mechanisms of Ageing and Development, 2010, 131, 389-404.	4.6	57
125	Ex vivo supplementation with nicotinic acid enhances cellular poly(ADP-ribosyl)ation and improves cell viability in human peripheral blood mononuclear cells. Biochemical Pharmacology, 2010, 80, 1103-1112.	4.4	26
126	Microdeletions within the hydrophobic core region of cellular prion protein alter its topology and metabolism. Biochemical and Biophysical Research Communications, 2010, 393, 439-444.	2.1	8

#	Article	IF	CITATIONS
127	High-Affinity Interaction of Poly(ADP-ribose) and the Human DEK Oncoprotein Depends upon Chain Length. Biochemistry, 2010, 49, 7119-7130.	2.5	49
128	Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents. FASEB Journal, 2009, 23, 2034-2044.	0.5	64
129	Immunolocalisation of PrPSc in scrapie-infected N2a mouse neuroblastoma cells by light and electron microscopy. European Journal of Cell Biology, 2009, 88, 45-63.	3.6	84
130	A caveat in mouse genetic engineering: ectopic gene targeting in ES cells by bidirectional extension of the homology arms of a gene replacement vector carrying human PARP-1. Transgenic Research, 2009, 18, 261-279.	2.4	12
131	A modified and automated version of the 'Fluorimetric Detection of Alkaline DNA Unwinding' method to quantify formation and repair of DNA strand breaks. BMC Biotechnology, 2009, 9, 39.	3.3	58
132	Role of poly(ADP-ribose) polymerase in sulfur mustard toxicity. Toxicology, 2009, 263, 20-25.	4.2	45
133	Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells. Biochemical and Biophysical Research Communications, 2009, 386, 232-236.	2.1	5
134	Genetic heterogeneity versus molecular analysis of prion susceptibility in neuroblasma N2a sublines. Archives of Virology, 2008, 153, 1693-1702.	2.1	11
135	The octarepeat region of prion protein, but not the TM1 domain, is important for the antioxidant effect of prion protein. Free Radical Biology and Medicine, 2008, 45, 1622-1630.	2.9	13
136	Effect of zinc on cellular poly(ADP-ribosyl)ation capacity. Experimental Gerontology, 2008, 43, 409-414.	2.8	31
137	Zinc and ageing (ZINCAGE Project). Experimental Gerontology, 2008, 43, 361-362.	2.8	13
138	DEK Is a Poly(ADP-Ribose) Acceptor in Apoptosis and Mediates Resistance to Genotoxic Stress. Molecular and Cellular Biology, 2008, 28, 3245-3257.	2.3	92
139	Imidazoquinolinone, Imidazopyridine, and Isoquinolindione Derivatives as Novel and Potent Inhibitors of the Poly(ADP-ribose) Polymerase (PARP): A Comparison with Standard PARP Inhibitors. Molecular Pharmacology, 2008, 74, 1587-1598.	2.3	54
140	Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovascular Research, 2008, 80, 280-289.	3.8	190
141	Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1. Nucleic Acids Research, 2008, 36, 6309-6317.	14.5	79
142	Poly(ADP-ribosyl)ation in mammalian ageing. Nucleic Acids Research, 2007, 35, 7456-7465.	14.5	94
143	Quantitative analysis of the binding affinity of poly(ADP-ribose) to specific binding proteins as a function of chain length. Nucleic Acids Research, 2007, 35, e143-e143.	14.5	133
144	Pathophysiology of ageing, longevity and age related diseases. Immunity and Ageing, 2007, 4, 4.	4.2	69

#	Article	IF	CITATIONS
145	Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO Journal, 2007, 26, 538-547.	7.8	202
146	Flow-cytometric assessment of cellular poly(ADP-ribosyl)ation capacity in peripheral blood lymphocytes. Immunity and Ageing, 2006, 3, 8.	4.2	20
147	DNA repair and PARP in aging. Free Radical Research, 2006, 40, 1295-1302.	3.3	52
148	Poly(ADP-RIBOSE) polymerase-1 (Parp-1) antagonizes topoisomerase I-dependent recombination stimulation by P53. Nucleic Acids Research, 2006, 34, 1036-1049.	14.5	24
149	Poly(ADP-Ribosyl)ation. , 2006, , .		11
150	SENS and the Polarization of Aging-Related Research. Science of Aging Knowledge Environment: SAGE KE, 2006, 2006, pe8-pe8.	0.8	1
151	Prion Protein in Milk. PLoS ONE, 2006, 1, e71.	2.5	26
152	Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS Journal, 2005, 272, 4576-4589.	4.7	266
153	Poly-ADP-ribosylation in health and disease. Cellular and Molecular Life Sciences, 2005, 62, 721-730.	5.4	93
154	Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma, 2005, 114, 67-74.	2.2	87
155	The emerging role of poly(ADP-ribose) polymerase-1 in longevity. International Journal of Biochemistry and Cell Biology, 2005, 37, 1043-1053.	2.8	59
156	Ageing and PARP. Pharmacological Research, 2005, 52, 93-99.	7.1	52
157	Poly(ADP-ribose) polymerase (PARP-1) and p53 independently function in regulating double-strand break repair in primate cells. Nucleic Acids Research, 2004, 32, 669-680.	14.5	38
158	Poly(ADP-ribosyl)ation and aging. Experimental Gerontology, 2004, 39, 1599-1601.	2.8	35
159	Poly(ADPâ€ribosyl)ation inhibitors: Promising drug candidates for a wide variety of pathophysiologic conditions. International Journal of Cancer, 2004, 111, 813-818.	5.1	78
160	Poly(ADP-Ribosyl)ation, PARP, and Aging. Science of Aging Knowledge Environment: SAGE KE, 2004, 2004, re9-re9.	0.8	19
161	Very low concentrations of arsenite suppress poly(ADP-ribosyl)ation in mammalian cells. International Journal of Cancer, 2003, 104, 1-6.	5.1	85
162	l-Selegiline Potentiates the Cellular Poly(ADP-Ribosyl)ation Response to Ionizing Radiation. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 973-979.	2.5	23

#	Article	IF	CITATIONS
163	Poly(ADP-ribose) polymerase-1 is a survival factor for radiation-exposed intestinal epithelial stem cells in vivo. Nucleic Acids Research, 2003, 31, 6198-6205.	14.5	43
164	Poly(ADP-ribosyl)ation accelerates DNA repair in a pathway dependent on Cockayne syndrome B protein. Nucleic Acids Research, 2003, 31, 5332-5337.	14.5	84
165	Up-regulation of cathepsin B and cathepsin L activities in scrapie-infected mouse Neuro2a cells. Journal of General Virology, 2003, 84, 2279-2283.	2.9	31
166	Genomic structure, conservation and FISH mapping of the <i>Rattus norvegicus Adprt</i> gene. Cytogenetic and Genome Research, 2002, 98, 298-301.	1.1	5
167	Role of poly(ADP-ribosyl)ation in DNA-PKcs- independent V(D)J recombination. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4532-4537.	7.1	30
168	Interference by toxic metal ions with zinc-dependent proteins involved in maintaining genomic stability. Food and Chemical Toxicology, 2002, 40, 1179-1184.	3.6	132
169	In memoriam Bernard Strehler—genomic instability in ageing: a persistent challenge. Mechanisms of Ageing and Development, 2002, 123, 899-906.	4.6	9
170	Poly(ADP-ribose) polymerase-1, DNA repair and mammalian longevity. Experimental Gerontology, 2002, 37, 1203-1205.	2.8	15
171	Reduced poly(ADP-ribosyl)ation in lymphocytes of laryngeal cancer patients: Results of a case-control study. International Journal of Cancer, 2002, 98, 780-784.	5.1	32
172	In-situ analysis of cellular poly(ADP-ribose) production in scrapie-infected mouse neuroblastoma cells. The Histochemical Journal, 2002, 34, 357-363.	0.6	4
173	Increase in <i>de novo</i> HBV DNA integrations in response to oxidative DNA damage or inhibition of poly(ADP-ribosyl)ation. Hepatology, 2002, 35, 217-223.	7.3	89
174	Poly(APD-ribosyl)ation, a DNA damage-driven protein modification and regulator of genomic instability. Cancer Letters, 2001, 163, 1-5.	7.2	91
175	Physiology and pathophysiology of poly(ADP-ribosyl)ation *. BioEssays, 2001, 23, 795-806.	2.5	303
176	PARP-1: A Regulator of Genomic Stability Linked with Mammalian Longevity. ChemBioChem, 2001, 2, 725.	2.6	66
177	Stress, DNA damage and ageing — an integrative approach. Experimental Gerontology, 2001, 36, 1049-1062.	2.8	182
178	Mechanisms of ageing. Eye, 2001, 15, 371-375.	2.1	40
179	Negative regulation of alkylation-induced sister-chromatid exchange by poly(ADP-ribose) polymerase-1 activity. International Journal of Cancer, 2000, 88, 351-355.	5.1	62
180	Comparative characterisation of poly(ADP-ribose) polymerase-1 from two mammalian species with different life span. Experimental Gerontology, 2000, 35, 989-1002.	2.8	52

#	Article	IF	CITATIONS
181	Quantitative assessment of bleomycin-induced poly(ADP-ribosyl)ation in human lymphocytes by immunofluorescence and image analysis. Journal of Immunological Methods, 2000, 244, 145-151.	1.4	6
182	Poly(ADP-ribosyl)ation: a posttranslational protein modification linked with genome protection and mammalian longevity. , 2000, 1, 41-46.		41
183	Mechanistic aspects of the cytotoxic activity of glufosfamide, a new tumour therapeutic agent. British Journal of Cancer, 2000, 82, 629-634.	6.4	37
184	New polymorphisms in the human poly(ADP-ribose) polymerase-1 coding sequence: lack of association with longevity or with increased cellular poly(ADP-ribosyl)ation capacity. Journal of Molecular Medicine, 2000, 78, 431-440.	3.9	21
185	New polymorphisms in the human poly(ADP-ribose) polymerase-1 coding sequence: lack of association with longevity or with increased cellular poly(ADP-ribosyl)ation capacity. Journal of Molecular Medicine, 2000, 78, 431-440.	3.9	56
186	Poly(ADPâ€Ribosyl)ation, Genomic Instability, and Longevity. Annals of the New York Academy of Sciences, 2000, 908, 126-132.	3.8	21
187	Selective Loss of Poly(ADP-ribose) and the 85-kDa Fragment of Poly(ADP-ribose) Polymerase in Nucleoli during Alkylation-induced Apoptosis of HeLa Cells. Journal of Biological Chemistry, 1999, 274, 32122-32126.	3.4	73
188	Reactive oxygen species participate in mdr1b mRNA and P-glycoprotein overexpression in primary rat hepatocyte cultures. Carcinogenesis, 1999, 20, 407-414.	2.8	111
189	Tumorigenic conversion of immortal human skin keratinocytes (HaCaT) by elevated temperature. Oncogene, 1999, 18, 5638-5645.	5.9	78
190	Overexpression of dominant negative PARP interferes with tumor formation of HeLa cells in nude mice: Evidence for increased tumor cell apoptosis in vivo. Oncogene, 1999, 18, 7010-7015.	5.9	25
191	Poly(ADP-ribose) immunostaining to detect apoptosis induced by a neurotoxic fragment of prion protein. The Histochemical Journal, 1999, 31, 711-716.	0.6	15
192	Title is missing!. Molecular and Cellular Biochemistry, 1999, 193, 31-35.	3.1	15
193	Detection of poly(ADP-ribose) synthesis in Drosophila testes upon Î ³ -irradiation. Chromosoma, 1999, 108, 44-51.	2.2	16
194	Quantitative Nonisotopic Immuno-Dot-Blot Method for the Assessment of Cellular Poly(ADP-ribosyl)ation Capacity. Analytical Biochemistry, 1999, 275, 118-122.	2.4	15
195	Trans-dominant inhibition of poly(ADP-ribosyl)ation potentiates alkylation-induced shuttle-vector mutagenesis in Chinese hamster cells. Molecular and Cellular Biochemistry, 1999, 193, 31-5.	3.1	4
196	Poly(ADP-ribose) polymerase and aging. Experimental Gerontology, 1998, 33, 519-523.	2.8	14
197	Immunodot Blot Method for the Detection of Poly(ADP-ribose) Synthesizedin Vitroandin Vivo. Analytical Biochemistry, 1998, 259, 280-283.	2.4	45
198	Increased poly(ADP-ribose) polymerase activity in lymphoblastoid cell lines from centenarians. Journal of Molecular Medicine, 1998, 76, 346-354.	3.9	125

#	Article	IF	CITATIONS
199	Overexpression of Nonconvertible PrP ^{<i>c</i>} Δ114–121 in Scrapie-Infected Mouse Neuroblastoma Cells Leads to <i>trans</i> -Dominant Inhibition of Wild-Type PrP ^{<i>Sc</i> } Accumulation. Journal of Virology, 1998, 72, 1153-1159.	3.4	121
200	Functional overexpression of human poly(ADP-ribose) polymerase in transfected rat tumor cells. Carcinogenesis, 1997, 18, 663-668.	2.8	14
201	Multiparametric Staining to Identify Apoptotic Human Cells. Experimental Cell Research, 1997, 234, 174-177.	2.6	58
202	NAD+ loading of mammalian cells by electrotransfection leads to increased poly(ADP-ribosyl)ation capacity. Biochimie, 1997, 79, 175-178.	2.6	1
203	Overexpression of Human poly(ADP-Ribose) Polymerase in Transfected Hamster Cells Leads to Increased Poly(ADP-Ribosyl)ation and Cellular Sensitization to gamma irradiation. FEBS Journal, 1997, 244, 15-20.	0.2	46
204	Increase in the frequency of hepadnavirus DNA integrations by oxidative DNA damage and inhibition of DNA repair. Journal of Virology, 1997, 71, 5455-5463.	3.4	49
205	Detection of poly(ADP-ribose) polymerase and its reaction product poly(ADP-ribose) by immunocytochemistry. The Histochemical Journal, 1996, 28, 391-395.	0.6	28
206	Trans-dominant inhibition of poly(ADP-ribosyl)ation potentiates carcinogen induced gene amplification in SV40-transformed Chinese hamster cells. Cancer Research, 1996, 56, 2715-7.	0.9	43
207	<i>trans</i> -Dominant Inhibition of Poly(ADP-Ribosyl)ation Sensitizes Cells against γ-Irradiation and <i>N</i> -Methyl- <i>N</i> ′-Nitro- <i>N</i> -Nitrosoguanidine but Does Not Limit DNA Replication of a Polyomavirus Replicon. Molecular and Cellular Biology, 1995, 15, 3154-3163.	2.3	125
208	Inactivation of the Poly(ADP-ribose) Polymerase Gene Affects Oxygen Radical and Nitric Oxide Toxicity in Islet Cells. Journal of Biological Chemistry, 1995, 270, 11176-11180.	3.4	258
209	Molecular genetic systems to study the role of poly(ADP-ribosyl)ation in the cellular response to DNA damage. Biochimie, 1995, 77, 450-455.	2.6	17
210	High-level expression of adeno-associated virus (AAV) Rep78 or Rep68 protein is sufficient for infectious-particle formation by a rep-negative AAV mutant. Journal of Virology, 1995, 69, 6880-6885.	3.4	38
211	Cell lines inducibly expressing the adeno-associated virus (AAV) rep gene: requirements for productive replication of rep-negative AAV mutants. Journal of Virology, 1994, 68, 7169-7177.	3.4	50
212	Increased poly(ADP-ribosyl)ation in intact cells by cisplatin treatment. Carcinogenesis, 1993, 14, 559-561.	2.8	108
213	Human cytomegalovirus induces JC virus DNA replication in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 11406-11410.	7.1	47
214	Overproduction of the poly(ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells. EMBO Journal, 1993, 12, 2109-17.	7.8	99
215	Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11759-11763.	7.1	262
216	Poly(ADP-ribosyl)ation: its role in inducible DNA amplification, and its correlation with the longevity of mammalian species. Experimental and Clinical Immunogenetics, 1992, 9, 230-40.	1.2	11

#	Article	IF	CITATIONS
217	Direct stimulation of poly(ADP ribose) polymerase in permeabilized cells by double-stranded DNA oligomers. Analytical Biochemistry, 1991, 193, 236-239.	2.4	41
218	Inhibition of poly(ADP-ribosyl)ation by overexpressing the poly(ADP-ribose) polymerase DNA-binding domain in mammalian cells Journal of Biological Chemistry, 1990, 265, 18721-18724.	3.4	87
219	The adeno-associated virus rep gene suppresses herpes simplex virus-induced DNA amplification. Journal of Virology, 1990, 64, 3012-3018.	3.4	152
220	Potentiation of carcinogen-induced methotrexate resistance and dihydrofolate reductase gene amplification by inhibitors of poly(adenosine diphosphate-ribose) polymerase. Cancer Research, 1990, 50, 5756-60.	0.9	33
221	Inhibition of poly(ADP-ribosyl)ation by overexpressing the poly(ADP-ribose) polymerase DNA-binding domain in mammalian cells. Journal of Biological Chemistry, 1990, 265, 18721-4.	3.4	75
222	Inhibition of carcinogen-inducible DNA amplification in a simian virus 40-transformed hamster cell line by ethacridine or ethanol. Cancer Research, 1989, 49, 2584-7.	0.9	5
223	DNA amplification of adeno-associated virus as a response to cellular genotoxic stress. Cancer Research, 1988, 48, 3123-9.	0.9	192
224	Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene. Journal of Virology, 1987, 61, 119-124.	3.4	75
225	Enhancement of N-methyl-N'-nitro-N-nitrosoguanidine-induced DNA amplification in a Simian virus 40-transformed Chinese hamster cell line by 3-aminobenzamide. Cancer Research, 1987, 47, 3632-6.	0.9	50