Zhuo Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7692208/publications.pdf

Version: 2024-02-01

		279798	302126
53	2,258	23	39
papers	citations	h-index	g-index
53	53	53	3585
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Large-scale production of two-dimensional nanosheets. Journal of Materials Chemistry, 2012, 22, 13494.	6.7	351
2	Solvent-Assisted Thermal Reduction of Graphite Oxide. Journal of Physical Chemistry C, 2010, 114, 14819-14825.	3.1	264
3	Materials, Devices, and Systems of Onâ€Skin Electrodes for Electrophysiological Monitoring and Human–Machine Interfaces. Advanced Science, 2021, 8, 2001938.	11.2	168
4	Highly Conductive, Flexible, Polyurethaneâ€Based Adhesives for Flexible and Printed Electronics. Advanced Functional Materials, 2013, 23, 1459-1465.	14.9	148
5	Ultrafast, dry microwave synthesis of graphene sheets. Journal of Materials Chemistry, 2010, 20, 4781.	6.7	128
6	Controlled Growth of Multilayer, Few-Layer, and Single-Layer Graphene on Metal Substrates. Journal of Physical Chemistry C, 2011, 115, 5232-5238.	3.1	119
7	Rational Design of a Printable, Highly Conductive Siliconeâ€based Electrically Conductive Adhesive for Stretchable Radioâ€Frequency Antennas. Advanced Functional Materials, 2015, 25, 464-470.	14.9	109
8	Matrix-Independent Highly Conductive Composites for Electrodes and Interconnects in Stretchable Electronics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8567-8575.	8.0	89
9	Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nature Communications, 2020, 11, 3529.	12.8	85
10	Autonomous self-healing, self-adhesive, highly conductive composites based on a silver-filled polyborosiloxane/polydimethylsiloxane double-network elastomer. Journal of Materials Chemistry A, 2019, 7, 27278-27288.	10.3	79
11	On-skin graphene electrodes for large area electrophysiological monitoring and human-machine interfaces. Carbon, 2020, 164, 164-170.	10.3	60
12	Hierarchical ferric-cobalt-nickel ternary oxide nanowire arrays supported on graphene fibers as high-performance electrodes for flexible asymmetric supercapacitors. Nano Research, 2018, 11 , 1775 - 1786 .	10.4	55
13	Flexible Mechanical Metamaterials Enabled Electronic Skin for Realâ€Time Detection of Unstable Grasping in Robotic Manipulation. Advanced Functional Materials, 2022, 32, .	14.9	48
14	Towards Practical Application of Paper based Printed Circuits: Capillarity Effectively Enhances Conductivity of the Thermoplastic Electrically Conductive Adhesives. Scientific Reports, 2014, 4, 6275.	3.3	42
15	In Situ Generation of Photosensitive Silver Halide for Improving the Conductivity of Electrically Conductive Adhesives. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29047-29054.	8.0	39
16	Bioinspired Perspirationâ€Wicking Electronic Skins for Comfortable and Reliable Multimodal Health Monitoring. Advanced Functional Materials, 2022, 32, .	14.9	39
17	Rational design of flexible capacitive sensors with highly linear response over a broad pressure sensing range. Nanoscale, 2020, 12, 21198-21206.	5.6	38
18	Hydrolysis and condensation of a benzocyclobutene-functionalized precursor for the synthesis of high performance low-K polymers. RSC Advances, 2017, 7, 14406-14412.	3.6	37

#	Article	IF	CITATIONS
19	Thermally Conductive Graphene Films for Heat Dissipation. ACS Applied Nano Materials, 2020, 3, 2149-2155.	5.0	33
20	Conductivity enhancement of polymer composites using high-temperature short-time treated silver fillers. Composites Part A: Applied Science and Manufacturing, 2017, 100, 64-70.	7.6	31
21	Ultrafast self-healing and self-adhesive polysiloxane towards reconfigurable on-skin electronics. Journal of Materials Chemistry A, 2022, 10, 1750-1759.	10.3	31
22	The conduction development mechanism of silicone-based electrically conductive adhesives. Journal of Materials Chemistry C, 2013, 1, 4368.	5.5	30
23	High-Quality Vertically Aligned Carbon Nanotubes for Applications as Thermal Interface Materials. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4, 232-239.	2.5	30
24	Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity. Journal of Electronic Materials, 2018, 47, 2929-2939.	2.2	20
25	Highly Sensitive Conformal Pressure Sensing Coatings Based on Thermally Expandable Microspheres. Advanced Materials Technologies, 2020, 5, 2000032.	5.8	20
26	Design Strategy for Transformative Electronic System toward Rapid, Bidirectional Stiffness Tuning using Graphene and Flexible Thermoelectric Device Interfaces. Advanced Materials, 2021, 33, e2007239.	21.0	18
27	Flexible and Stretchable Dry Active Electrodes With PDMS and Silver Flakes for Bio-Potentials Sensing Systems. IEEE Sensors Journal, 2021, 21, 12255-12268.	4.7	18
28	Expansion force induced <i>in situ</i> formation of a 3D boron nitride network for light-weight, low- <i>k</i> , low-loss, and thermally conductive composites. Journal of Materials Chemistry A, 2022, 10, 14336-14344.	10.3	18
29	High-Fidelity Recording of EMG Signals by Multichannel On-Skin Electrode Arrays from Target Muscles for Effective Human–Machine Interfaces. ACS Applied Electronic Materials, 2021, 3, 1350-1358.	4.3	16
30	Bioinspired hierarchical polydimethylsiloxane/polyaniline array for ultrasensitive pressure monitoring. Chemical Engineering Journal, 2022, 441, 136028.	12.7	16
31	Self-Patterning of Silica/Epoxy Nanocomposite Underfill by Tailored Hydrophilic-Superhydrophobic Surfaces for 3D Integrated Circuit (IC) Stacking. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8437-8442.	8.0	13
32	Silver dendrites based electrically conductive composites, towards the application of stretchable conductors. Composites Communications, 2020, 19, 121-126.	6.3	13
33	Grab and Heat: Highly Responsive and Shape Adaptive Soft Robotic Heaters for Effective Heating of Objects of Three-Dimensional Curvilinear Surfaces. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47476-47484.	8.0	10
34	Thermo-mechanical properties of Isotropic Conductive Adhesive filled with Metallized Polymer Spheres., 2013,,.		8
35	Analytical models for predicting penetration depth during slot die coating onto porous media. AICHE Journal, 2014, 60, 4241-4252.	3.6	7
36	Quality Control of Vertically Aligned Carbon Nanotubes Grown by Chemical Vapor Deposition. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3, 1804-1810.	2.5	6

#	Article	IF	Citations
37	Flexible Hybrid Integration Enabled xsOn-Skin Electronics for Wireless Monitoring of Electrophysiology and Motion. IEEE Transactions on Biomedical Engineering, 2022, 69, 1340-1348.	4.2	6
38	Nano filler dispersion in polymer composites for electronic packaging. , 2012, , .		4
39	Carbon nanotubes inhibit the freeâ€radical crossâ€linking of siloxane polymers. Journal of Applied Polymer Science, 2014, 131, .	2.6	3
40	Collaborative Optimal Pricing and Day-Ahead and Intra-Day Integrative Dispatch of the Active Distribution Network with Multi-Type Active Loads. Energies, 2018, 11, 959.	3.1	3
41	An End-to-End Spatial Grasp Prediction Model for Humanoid Multi-fingered Hand Using Deep Network. , 2021, , .		2
42	Novel stretchable electrically conductive composites for tunable RF devices. , 2012, , .		1
43	Stretchable/printed RF devices via high-throughput, high-definability soft-lithography fabrication. , 2013, , .		1
44	The investigation of interface effect on the properties of nanosilica-based underfill., 2017,,.		1
45	Transformative Electronics: Design Strategy for Transformative Electronic System toward Rapid, Bidirectional Stiffness Tuning using Graphene and Flexible Thermoelectric Device Interfaces (Adv.) Tj ETQq1 1 C).78 43.1 04 rg	gBT1/Overlock
46	Enhancement of dielectric strength and processibility of high dielectric constant Al nanocomposite by organic molecule treatment., 2011,,.		0
47	Surface engineering of graphene for high performance supercapacitors., 2011,,.		0
48	Capacitive deionization of water coolant using hybrid carbon electrodes for high power electronic applications. , 2014 , , .		0
49	Analysis of Energy Demand for Island Microgrids Based on Spatial-Temporal Dynamics of Moving Energy Storage. , 2018, , .		0
50	Wet-Spun Graphene Sheets as Flexible Heat Spreaders for Efficient Thermal Management. , 2018, , .		0
51	Preparation of autonomously self-healing electrode based on double network supramolecular elastomer. , 2020, , .		0
52	Pressure Sensors: Highly Sensitive Conformal Pressure Sensing Coatings Based on Thermally Expandable Microspheres (Adv. Mater. Technol. 5/2020). Advanced Materials Technologies, 2020, 5, 2070027.	5.8	0
53	Formation of Graphene–Silicon Junction by Room Temperature Reduction With Simultaneous Defects Removal. IEEE Transactions on Electron Devices, 2021, 68, 873-878.	3.0	0