List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/769170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature, 1998, 392, 293-296.	13.7	1,734
2	Sudden Death Associated With Short-QT Syndrome Linked to Mutations in HERG. Circulation, 2004, 109, 30-35.	1.6	804
3	HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies: This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace, 2011, 13, 1077-1109.	0.7	699
4	Right Bundle-Branch Block and ST-Segment Elevation in Leads V ₁ Through V ₃ . Circulation, 1998, 97, 457-460.	1.6	696
5	Ionic Mechanisms Responsible for the Electrocardiographic Phenotype of the Brugada Syndrome Are Temperature Dependent. Circulation Research, 1999, 85, 803-809.	2.0	557
6	Present Status of Brugada Syndrome. Journal of the American College of Cardiology, 2018, 72, 1046-1059.	1.2	291
7	Short QT Syndrome and Atrial Fibrillation Caused by Mutation in KCNH2. Journal of Cardiovascular Electrophysiology, 2005, 16, 394-396.	0.8	274
8	Electrical Substrate Elimination in 135 Consecutive Patients With Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2017, 10, e005053.	2.1	177
9	Prognostic Value of Electrophysiologic Investigations in Brugada Syndrome. Journal of Cardiovascular Electrophysiology, 2001, 12, 1004-1007.	0.8	142
10	Brugada syndrome: clinical and genetic findings. Genetics in Medicine, 2016, 18, 3-12.	1.1	102
11	A Missense Mutation in the Sodium Channel β2 Subunit Reveals <i>SCN2B</i> as a New Candidate Gene for Brugada Syndrome. Human Mutation, 2013, 34, 961-966.	1.1	96
12	Cardiac Channelopathies and Sudden Death: Recent Clinical and Genetic Advances. Biology, 2017, 6, 7.	1.3	88
13	Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation, 2020, 142, 324-338.	1.6	83
14	Microbiota alterations in proline metabolism impact depression. Cell Metabolism, 2022, 34, 681-701.e10.	7.2	77
15	The Brugada syndrome. Current Cardiology Reports, 2000, 2, 507-514.	1.3	75
16	Fever-related arrhythmic events in the multicenter Survey on Arrhythmic Events in Brugada Syndrome. Heart Rhythm, 2018, 15, 1394-1401.	0.3	71
17	Genetic basis of dilated cardiomyopathy. International Journal of Cardiology, 2016, 224, 461-472.	0.8	67
18	Gender differences in patients with Brugada syndrome and arrhythmic events: Data from a survey on arrhythmic events in 678 patients. Heart Rhythm, 2018, 15, 1457-1465.	0.3	65

#	Article	IF	CITATIONS
19	Arrhythmia Induction by Antiarrhythmic Drugs. PACE - Pacing and Clinical Electrophysiology, 2000, 23, 291-292.	0.5	62
20	Natural and Undetermined Sudden Death: Value of Post-Mortem Genetic Investigation. PLoS ONE, 2016, 11, e0167358.	1.1	62
21	Electroanatomic and Pathologic Right Ventricular Outflow Tract Abnormalities in Patients With Brugada Syndrome. Journal of the American College of Cardiology, 2018, 72, 2747-2757.	1.2	60
22	Recent Advances in Short QT Syndrome. Frontiers in Cardiovascular Medicine, 2018, 5, 149.	1.1	60
23	Further evidence of the association between LQT syndrome and epilepsy in a family with KCNQ1 pathogenic variant. Seizure: the Journal of the British Epilepsy Association, 2015, 25, 65-67.	0.9	58
24	Age of First Arrhythmic Event in Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	2.1	57
25	Profile of patients with Brugada syndrome presenting with their first documented arrhythmic event: Data from the Survey on Arrhythmic Events in BRUgada Syndrome (SABRUS). Heart Rhythm, 2018, 15, 716-724.	0.3	57
26	Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genetics in Medicine, 2021, 23, 47-58.	1.1	57
27	Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.	9.4	55
28	Characterization and Management of Arrhythmic Events in Young Patients With Brugada Syndrome. Journal of the American College of Cardiology, 2019, 73, 1756-1765.	1.2	53
29	Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome. Nature Reviews Cardiology, 2017, 14, 744-756.	6.1	51
30	Genetic investigation of sudden unexpected death in epilepsy cohort by panel target resequencing. International Journal of Legal Medicine, 2016, 130, 331-339.	1.2	49
31	Dual Fatty Acid Synthase and HER2 Signaling Blockade Shows Marked Antitumor Activity against Breast Cancer Models Resistant to Anti-HER2 Drugs. PLoS ONE, 2015, 10, e0131241.	1.1	48
32	Sodium channel current loss of function in induced pluripotent stem cell-derived cardiomyocytes from a Brugada syndrome patient. Journal of Molecular and Cellular Cardiology, 2018, 114, 10-19.	0.9	47
33	Genetic Analysis of Arrhythmogenic Diseases in the Era of NGS: The Complexity of Clinical Decision-Making in Brugada Syndrome. PLoS ONE, 2015, 10, e0133037.	1.1	46
34	Reanalysis and reclassification of rare genetic variants associated with inherited arrhythmogenic syndromes. EBioMedicine, 2020, 54, 102732.	2.7	46
35	Clinical Features and Natural History of PRKAG2 Variant Cardiac Glycogenosis. Journal of the American College of Cardiology, 2020, 76, 186-197.	1.2	45
36	Post-mortem genetic analysis in juvenile cases of sudden cardiac death. Forensic Science International, 2014, 245, 30-37.	1.3	44

#	Article	IF	CITATIONS
37	Determining the Pathogenicity of Genetic Variants Associated with Cardiac Channelopathies. Scientific Reports, 2015, 5, 7953.	1.6	44
38	Clinical and molecular characterization of a cardiac ryanodine receptor founder mutation causing catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm, 2015, 12, 1636-1643.	0.3	38
39	Novel genes and sex differences in COVID-19 severity. Human Molecular Genetics, 2022, 31, 3789-3806.	1.4	38
40	Identification of N-terminal protein acetylation and arginine methylation of the voltage-gated sodium channel in end-stage heart failure human heart. Journal of Molecular and Cellular Cardiology, 2014, 76, 126-129.	0.9	37
41	Update on the Genetic Basis of Sudden Unexpected Death in Epilepsy. International Journal of Molecular Sciences, 2019, 20, 1979.	1.8	36
42	Update on Genetic Basis of Brugada Syndrome: Monogenic, Polygenic or Oligogenic?. International Journal of Molecular Sciences, 2020, 21, 7155.	1.8	36
43	Patients With Brugada Syndrome and Implanted Cardioverter-Defibrillators. Journal of the American College of Cardiology, 2017, 70, 1991-2002.	1.2	34
44	Concomitant Brugada-like and short QT electrocardiogram linked to SCN5A mutation. European Journal of Human Genetics, 2012, 20, 1189-1192.	1.4	33
45	Familial Dilated Cardiomyopathy Caused by a Novel Frameshift in the BAC3 Gene. PLoS ONE, 2016, 11, e0158730.	1.1	33
46	Acute, Exercise Dose-Dependent Impairment in Atrial Performance DuringÂan Endurance Race. JACC: Cardiovascular Imaging, 2016, 9, 1380-1388.	2.3	33
47	Short QT Syndrome: A Comprehensive Genetic Interpretation and Clinical Translation of Rare Variants. Journal of Clinical Medicine, 2019, 8, 1035.	1.0	33
48	Genetic interpretation and clinical translation of minor genes related to Brugada syndrome. Human Mutation, 2019, 40, 749-764.	1.1	32
49	Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy. PLoS ONE, 2017, 12, e0181465.	1.1	32
50	Targeted next-generation sequencing provides novel clues for associated epilepsy and cardiac conduction disorder/SUDEP. PLoS ONE, 2017, 12, e0189618.	1.1	32
51	Obesity-associated deficits in inhibitory control are phenocopied to mice through gut microbiota changes in one-carbon and aromatic amino acids metabolic pathways. Gut, 2021, 70, 2283-2296.	6.1	31
52	Genetics of channelopathies associated with sudden cardiac death. Global Cardiology Science & Practice, 2015, 2015, 39.	0.3	29
53	Transcriptional regulation of the sodium channel gene (SCN5A) by GATA4 in human heart. Journal of Molecular and Cellular Cardiology, 2017, 102, 74-82.	0.9	29
54	Whole-Brain Dynamics in Aging: Disruptions in Functional Connectivity and the Role of the Rich Club. Cerebral Cortex, 2021, 31, 2466-2481.	1.6	29

#	Article	IF	CITATIONS
55	Sudden infant death syndrome caused by cardiac arrhythmias: only a matter of genes encoding ion channels?. International Journal of Legal Medicine, 2016, 130, 415-420.	1.2	28
56	Plasma microRNAs as biomarkers for Lamin A/C-related dilated cardiomyopathy. Journal of Molecular Medicine, 2018, 96, 845-856.	1.7	28
57	Experimental Models of Brugada syndrome. International Journal of Molecular Sciences, 2019, 20, 2123.	1.8	28
58	An International Multicenter Cohort Study on β-Blockers for the Treatment of Symptomatic Children With Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2022, 145, 333-344.	1.6	28
59	Is Atrial Fibrillation a Genetic Disease?. Journal of Cardiovascular Electrophysiology, 2005, 16, 553-556.	0.8	26
60	Identification of Genetic Alterations, as Causative Genetic Defects in Long QT Syndrome, Using Next Generation Sequencing Technology. PLoS ONE, 2014, 9, e114894.	1.1	26
61	Role of copy number variants in sudden cardiac death and related diseases: genetic analysis and translation into clinical practice. European Journal of Human Genetics, 2018, 26, 1014-1025.	1.4	26
62	Comprehensive Genetic Characterization of a Spanish Brugada Syndrome Cohort. PLoS ONE, 2015, 10, e0132888.	1.1	25
63	Incomplete Penetrance and Variable Expressivity: Hallmarks in Channelopathies Associated with Sudden Cardiac Death. Biology, 2018, 7, 3.	1.3	25
64	Use of intravenous antiarrhythmics to identify concealed Brugada syndrome. , 2000, 1, 45.		24
65	Brugada Syndrome. Circulation, 2001, 104, 3017-3019.	1.6	24
66	A Novel Mutation in Lamin A/C Causing Familial Dilated Cardiomyopathy Associated With Sudden Cardiac Death. Journal of Cardiac Failure, 2015, 21, 217-225.	0.7	24
67	Large Genomic Imbalances in Brugada Syndrome. PLoS ONE, 2016, 11, e0163514.	1.1	23
68	Stop-Gain Mutations in PKP2 Are Associated with a Later Age of Onset of Arrhythmogenic Right Ventricular Cardiomyopathy. PLoS ONE, 2014, 9, e100560.	1.1	22
69	The longâ€QT syndrome and exercise practice: The neverâ€ending debate. Journal of Cardiovascular Electrophysiology, 2018, 29, 489-496.	0.8	22
70	Ethnic differences in patients with Brugada syndrome and arrhythmic events: New insights from Survey on Arrhythmic Events in Brugada Syndrome. Heart Rhythm, 2019, 16, 1468-1474.	0.3	22
71	Genetic variants of uncertain significance: How to match scientific rigour and standard of proof in sudden cardiac death?. Legal Medicine, 2020, 45, 101712.	0.6	22
72	Sudden Cardiac Death and Copy Number Variants: What Do We Know after 10 Years of Genetic Analysis?. Forensic Science International: Genetics, 2020, 47, 102281.	1.6	20

#	Article	IF	CITATIONS
73	The molecular genetics of arrhythmias and sudden death. Clinical Cardiology, 1998, 21, 553-560.	0.7	19
74	The role of clinical, genetic and segregation evaluation in sudden infant death. Forensic Science International, 2014, 242, 9-15.	1.3	19
75	Genetic basis of atrial fibrillation. Genes and Diseases, 2016, 3, 257-262.	1.5	19
76	Short QT syndrome in pediatrics. Clinical Research in Cardiology, 2017, 106, 393-400.	1.5	18
77	The Aging Imageomics Study: rationale, design and baseline characteristics of the study population. Mechanisms of Ageing and Development, 2020, 189, 111257.	2.2	18
78	Trafficking and localisation to the plasma membrane of Na _v 1.5 promoted by the β2 subunit is defective due to a β2 mutation associated with Brugada syndrome. Biology of the Cell, 2017, 109, 273-291.	0.7	17
79	N-Glycosylation of the voltage-gated sodium channel β2 subunit is required for efficient trafficking of NaV1.5/β2 to the plasma membrane. Journal of Biological Chemistry, 2019, 294, 16123-16140.	1.6	17
80	Common variation in fatty acid metabolic genes and risk of incident sudden cardiac arrest. Heart Rhythm, 2014, 11, 471-477.	0.3	16
81	Rare Titin (TTN) Variants in Diseases Associated with Sudden Cardiac Death. International Journal of Molecular Sciences, 2015, 16, 25773-25787.	1.8	16
82	Genetic analysis, in silico prediction, and family segregation in long QT syndrome. European Journal of Human Genetics, 2015, 23, 79-85.	1.4	16
83	Brugada Syndrome and PKP2: Evidences and uncertainties. International Journal of Cardiology, 2016, 214, 403-405.	0.8	16
84	Brugada Syndrome and Exercise Practice: Current Knowledge, Shortcomings and Open Questions. International Journal of Sports Medicine, 2017, 38, 573-581.	0.8	16
85	Time-to-first appropriate shock in patients implanted prophylactically with an implantable cardioverter-defibrillator: data from the Survey on Arrhythmic Events in BRUgada Syndrome (SABRUS). Europace, 2019, 21, 796-802.	0.7	16
86	The arrhythmogenic right ventricular cardiomyopathy in comparison to the athletic heart. Journal of Cardiovascular Electrophysiology, 2020, 31, 1836-1843.	0.8	16
87	Subcellular localisation of retromer in postâ€endocytic pathways of polarised Madin–Darby canine kidney cells. Biology of the Cell, 2014, 106, 377-393.	0.7	15
88	The role of clinical assessment and electrophysiology study in Brugada syndrome patients with syncope. American Heart Journal, 2020, 220, 213-223.	1.2	15
89	Acquired Forms of Brugada Syndrome. , 0, , 166-177.		13
90	Proteomic identification of putative biomarkers for early detection of sudden cardiac death in a family with a LMNA gene mutation causing dilated cardiomyopathy. Journal of Proteomics, 2016, 148, 75-84.	1.2	13

#	Article	IF	CITATIONS
91	Rare Variants Associated with Arrhythmogenic Cardiomyopathy: Reclassification Five Years Later. Journal of Personalized Medicine, 2021, 11, 162.	1.1	13
92	Prevalence of Pathogenic Variants in Cardiomyopathy-Associated Genes in Myocarditis. Circulation Genomic and Precision Medicine, 2022, 15, 101161CIRCGEN121003408.	1.6	13
93	Genetics of cardiovascular disease with emphasis on atrial fibrillation. Journal of Interventional Cardiac Electrophysiology, 1999, 3, 7-13.	0.6	12
94	Short QT and atrial fibrillation: A KCNQ1 mutation–specific disease. Late follow-up in three unrelated children. HeartRhythm Case Reports, 2015, 1, 193-197.	0.2	12
95	Elucidating the Role of K+ Channels during In Vitro Capacitation of Boar Spermatozoa: Do SLO1 Channels Play a Crucial Role?. International Journal of Molecular Sciences, 2019, 20, 6330.	1.8	12
96	Sudden death: managing the family, the role of genetics. Heart, 2011, 97, 676-681.	1.2	11
97	Sudden Arrhythmic Death During Exercise: A Post-Mortem Genetic Analysis. Sports Medicine, 2017, 47, 2101-2115.	3.1	11
98	Role of genetic and electrolyte abnormalities in prolonged QTc interval and sudden cardiac death in end-stage renal disease patients. PLoS ONE, 2018, 13, e0200756.	1.1	11
99	Trafficking and Function of the Voltage-Gated Sodium Channel β2 Subunit. Biomolecules, 2019, 9, 604.	1.8	11
100	Clinical impact of rare variants associated with inherited channelopathies: a 5-year update. Human Genetics, 2022, 141, 1579-1589.	1.8	11
101	Molecular autopsy in a cohort of infants died suddenly at rest. Forensic Science International: Genetics, 2018, 37, 54-63.	1.6	10
102	Brugada Syndrome: anesthetic considerations and management algorithm. Minerva Anestesiologica, 2019, 85, 173-188.	0.6	10
103	Optimized pacing mode for hypertrophic cardiomyopathy: Impact of ECG fusion during pacing. Heart Rhythm, 2015, 12, 909-916.	0.3	9
104	Clinical Genetics of Inherited Arrhythmogenic Disease in the Pediatric Population. Biomedicines, 2022, 10, 106.	1.4	9
105	Cellular Mechanisms Underlying the Brugada Syndrome. , 0, , 52-77.		8
106	Sudden Death without a Clear Cause after Comprehensive Investigation: An Example of Forensic Approach to Atypical/Uncertain Findings. Diagnostics, 2021, 11, 886.	1.3	8
107	The effect of external stimulation on functional networks in the aging healthy human brain. Cerebral Cortex, 2022, 33, 235-245.	1.6	8

108 ST Segment Elevation and Sudden Death in the Athlete. , 0, , 119-129.

#	Article	IF	CITATIONS
109	Genotype-Phenotype Correlation of <i>SCN5A</i> Genotype in Patients With Brugada Syndrome and Arrhythmic Events: Insights From the SABRUS in 392 Probands. Circulation Genomic and Precision Medicine, 2021, 14, e003222.	1.6	7
110	Juvenile myoclonic epilepsy and Brugada type 1 ECG pattern associated with (a novel) plakophillin 2 mutation. Journal of Neurology, 2017, 264, 792-795.	1.8	6
111	Personalized Interpretation and Clinical Translation of Genetic Variants Associated With Cardiomyopathies. Frontiers in Genetics, 2019, 10, 450.	1.1	6
112	The Brugada Syndrome. Annals of Noninvasive Electrocardiology, 2000, 5, 88-91.	0.5	5
113	Age, Genetics, and Fibrosis in the BrugadaÂSyndrome â^—. Journal of the American College of Cardiology, 2015, 66, 1987-1989.	1.2	5
114	Sudden death due to catecholaminergic polymorphic ventricular tachycardia following negative stress-test outcome: genetics and clinical implications. Forensic Science, Medicine, and Pathology, 2017, 13, 217-225.	0.6	5
115	Genetic Variants as Sudden-Death Risk Markers in Inherited Arrhythmogenic Syndromes: Personalized Genetic Interpretation. Journal of Clinical Medicine, 2020, 9, 1866.	1.0	5
116	Electrocardiographic Assessment and Genetic Analysis in Neonates: a Current Topic of Discussion. Current Cardiology Reviews, 2018, 15, 30-37.	0.6	5
117	Value of 12 Lead Electrocardiogram and Derived Methodologies in the Diagnosis of Brugada Disease. , 0, , 87-110.		4
118	Spatiotemporal Characteristics of QRS Complexes Enable the Diagnosis of Brugada Syndrome Regardless of the Appearance of a Type 1 ECG. Journal of Cardiovascular Electrophysiology, 2016, 27, 563-570.	0.8	4
119	Do sodium channel proteolytic fragments regulate sodium channel expression?. Channels, 2017, 11, 476-481.	1.5	4
120	Malignant Arrhythmogenic Role Associated with RBM20: A Comprehensive Interpretation Focused on a Personalized Approach. Journal of Personalized Medicine, 2021, 11, 130.	1.1	4
121	The voltage-gated sodium channel β2 subunit associates with lipid rafts by S-palmitoylation. Journal of Cell Science, 2021, 134, .	1.2	4
122	Analysis of Brugada syndrome loci reveals that fine-mapping clustered GWAS hits enhances the annotation of disease-relevant variants. Cell Reports Medicine, 2021, 2, 100250.	3.3	4
123	Gene therapy for cardiovascular diseases. Expert Opinion on Therapeutic Patents, 2000, 10, 1385-1393.	2.4	3
124	Single Nucleotide Polymorphisms and Life-Threatening Arrhythmias: Causal or Casual?. Journal of Cardiovascular Electrophysiology, 2001, 12, 1230-1231.	0.8	3
125	The Brugada syndrome. Cardiovascular Drugs and Therapy, 2001, 15, 15-17.	1.3	3
126	Pharmacologic Approach to Therapy of Brugada Syndrome: Quinidine as an Alternative to ICD Therapy?. , 0, , 202-211.		3

#	Article	IF	CITATIONS
127	Molecular Genetics of the Brugada Syndrome. , 0, , 42-51.		3
128	Sudden death in structurally normal heart: we have learned a lot, but still a long way to go. European Heart Journal, 2016, 37, 638-639.	1.0	3
129	Pediatric Malignant Arrhythmias Caused by Rare Homozygous Genetic Variants in TRDN: A Comprehensive Interpretation. Frontiers in Pediatrics, 2020, 8, 601708.	0.9	3
130	Early Identification of Prolonged QT Interval for Prevention of Sudden Infant Death. Frontiers in Pediatrics, 2021, 9, 704580.	0.9	3
131	Rare variants in genes encoding structural myocyte contribute to a thickened ventricular septum in sudden death population without ventricular alterations. Forensic Science International: Genetics, 2022, 58, 102688.	1.6	3
132	The Brugada Syndrome. Journal of Interventional Cardiac Electrophysiology, 1999, 3, 202-204.	0.9	2
133	Treatment of Brugada Syndrome with an Implantable Cardioverter Defibrillator. , 0, , 194-201.		2
134	Biophysical Analysis of Mutant Sodium Channels in Brugada Syndrome. , 0, , 26-41.		2
135	A novel variant in RyR2 causes familiar catecholaminergic polymorphic ventricular tachycardia. Forensic Science International, 2017, 270, 173-177.	1.3	2
136	Electrocardiogram in Newborns: Beneficial or Not?. Pediatric Cardiology, 2019, 40, 1320-1321.	0.6	2
137	Premature Termination Codon in 5′ Region of Desmoplakin and Plakoglobin Genes May Escape Nonsense-Mediated Decay through the Reinitiation of Translation. International Journal of Molecular Sciences, 2022, 23, 656.	1.8	2
138	Discerning the Ambiguous Role of Missense TTN Variants in Inherited Arrhythmogenic Syndromes. Journal of Personalized Medicine, 2022, 12, 241.	1.1	2
139	Atrial Tachyarrhythmias in Brugada Syndrome. , 0, , 178-183.		1
140	Brugada Syndrome: Role of Genetics in Clinical Practice. , 0, , 130-139.		1
141	Predisposing Factors. , 0, , 157-165.		1
142	Brugada Syndrome: Relationship to other Arrhythmogenic Syndromes. , 0, , 111-118.		1
143	History of the Brugada Syndrome. , 0, , 23-25.		1
144	CONCOMITANT BRUGADA-LIKE AND SHORT QT ELECTROCARDIOGRAM LINKED TO SCN5A MUTATION. Heart, 2012, 98, E315.3-E316.	1.2	1

#	Article	IF	CITATIONS
145	The smooth muscle-type \hat{l}^21 subunit potentiates activation by DiBAC4(3) in recombinant BK channels. Channels, 2014, 8, 95-102.	1.5	1
146	Genetic analysis in post-mortem samples with micro-ischemic alterations. Forensic Science International, 2017, 271, 120-125.	1.3	1
147	Sudden infant death as the most severe phenotype caused by genetic modulation in a family with atrial fibrillation. Forensic Science International: Genetics, 2019, 43, 102159.	1.6	1
148	<i>BAG3</i> Genetic Cardiomyopathy May Overlap Fulminant Myocarditis Clinical Findings. Circulation: Heart Failure, 2022, 15, e008443.	1.6	1
149	Generation of an induced pluripotent stem cell line from a healthy Caucasian male. Stem Cell Research, 2022, 60, 102717.	0.3	1
150	Prognosis in Individuals with Brugada Syndrome. , 0, , 184-193.		0
151	Potential for Ablation Therapy in Patients with Brugada Syndrome. , 0, , 212-220.		Ο
152	Gender Differences in Brugada Syndrome. , 0, , 149-156.		0
153	Brugada Syndrome: Overview. , 0, , 1-22.		Ο
154	Genotype–Phenotype Relationship in the Brugada Syndrome. , 0, , 140-148.		0
155	Brugada Syndrome: Diagnostic Criteria. , 0, , 78-86.		Ο
156	Response to Letter Regarding Article, "Induced Brugada-Type Electrocardiogram, a Sign for Imminent Malignant Arrhythmias― Circulation, 2008, 118, .	1.6	0
157	Reply to letter to editor: "Genetic basis of dilated cardiomyopathy― International Journal of Cardiology, 2017, 229, 32.	0.8	0
158	GRAPES: A Versatile Tool for Analyzing Structural Variation From Wholeâ€Genome and Targeted DNA Sequencing Data. FASEB Journal, 2018, 32, 532.10.	0.2	0