Babita Madan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7691438/publications.pdf Version: 2024-02-01

ΒΑΒΙΤΑ ΜΑΠΑΝ

#	Article	IF	CITATIONS
1	Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochemical Pharmacology, 2022, 196, 114611.	2.0	7
2	A p300/GATA6 axis determines differentiation and Wnt dependency in pancreatic cancer models. Journal of Clinical Investigation, 2022, 132, .	3.9	13
3	Widespread Repression of Gene Expression in Cancer by a Wnt/β-Catenin/MAPK Pathway. Cancer Research, 2021, 81, 464-475.	0.4	19
4	WNT inhibition creates a BRCAâ€like state in Wntâ€addicted cancer. EMBO Molecular Medicine, 2021, 13, e13349.	3.3	28
5	The Wnt signaling receptor Fzd9 is essential for Myc-driven tumorigenesis in pancreatic islets. Life Science Alliance, 2021, 4, e201900490.	1.3	4
6	The Functional Landscape of Patient-Derived RNF43 Mutations Predicts Sensitivity to Wnt Inhibition. Cancer Research, 2020, 80, 5619-5632.	0.4	30
7	Wnt-regulated IncRNA discovery enhanced by in vivo identification and CRISPRi functional validation. Genome Medicine, 2020, 12, 89.	3.6	12
8	Wnts and the hallmarks of cancer. Cancer and Metastasis Reviews, 2020, 39, 625-645.	2.7	59
9	PORCN inhibition synergizes with PI3K/mTOR inhibition in Wnt-addicted cancers. Oncogene, 2019, 38, 6662-6677.	2.6	55
10	Opposing actions of renal tubular- and myeloid-derived porcupine in obstruction-inducedÂkidney fibrosis. Kidney International, 2019, 96, 1308-1319.	2.6	10
11	Broad regulation of gene isoform expression by Wnt signaling in cancer. Rna, 2019, 25, 1696-1713.	1.6	5
12	Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy. Bone Research, 2018, 6, 17.	5.4	70
13	Intrinsic Xenobiotic Resistance of the Intestinal Stem Cell Niche. Developmental Cell, 2018, 46, 681-695.e5.	3.1	26
14	Temporal dynamics of Wnt-dependent transcriptome reveal an oncogenic Wnt/MYC/ribosome axis. Journal of Clinical Investigation, 2018, 128, 5620-5633.	3.9	54
15	Scaffold Hopping and Optimization of Maleimide Based Porcupine Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 6678-6692.	2.9	19
16	First-in-human phase 1 study of ETC-159 an oral PORCN inhbitor in patients with advanced solid tumours Journal of Clinical Oncology, 2017, 35, 2584-2584.	0.8	25
17	USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2945-54.	3.3	84
18	Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis. Kidney International, 2016, 89, 1062-1074.	2.6	36

BABITA MADAN

#	Article	IF	CITATIONS
19	NOTUM is a potential pharmacodynamic biomarker of Wnt pathway inhibition. Oncotarget, 2016, 7, 12386-12392.	0.8	20
20	Discovery and Optimization of a Porcupine Inhibitor. Journal of Medicinal Chemistry, 2015, 58, 5889-5899.	2.9	35
21	Targeting Wnts at the Source—New Mechanisms, New Biomarkers, New Drugs. Molecular Cancer Therapeutics, 2015, 14, 1087-1094.	1.9	94
22	Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development (Cambridge), 2014, 141, 2206-2215.	1.2	286
23	Pharmacological Inhibition of the Wnt Acyltransferase PORCN Prevents Growth of WNT-Driven Mammary Cancer. Cancer Research, 2013, 73, 502-507.	0.4	315
24	SB1578, a Novel Inhibitor of JAK2, FLT3, and c-Fms for the Treatment of Rheumatoid Arthritis. Journal of Immunology, 2012, 189, 4123-4134.	0.4	31
25	Discovery of the Macrocycle (9 <i>E</i>)-15-(2-(Pyrrolidin-1-yl)ethoxy)-7,12,25-trioxa-19,21,24-triaza-tetracyclo[18.3.1.1(2,5).1(14,18)]hexac (SB1578), a Potent Inhibitor of Janus Kinase 2/Fms-LikeTyrosine Kinase-3 (JAK2/FLT3) for the Treatment of Rheumatoid Arthritis. Journal of Medicinal Chemistry. 2012. 55. 2623-2640.	osa-1(24), 2.9	2,4,9,14(26) 41
26	Isoliquiritigenin inhibits lκB kinase activity and ROS generation to block TNF-α induced expression of cell adhesion molecules on human endothelial cells. Biochemical Pharmacology, 2007, 73, 1602-1612.	2.0	108
27	Polarized helper T cells in tubercular pleural effusion: phenotypic identity and selective recruitment. European Journal of Immunology, 2005, 35, 2367-2375.	1.6	57
28	1,4-Dihydroxyxanthone modulates the adhesive property of endothelial cells by inhibiting intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin. Bioorganic and Medicinal Chemistry, 2004, 12, 1431-1437.	1.4	10
29	Canscora decussata (Roxb.) Schult (Gentianaceae) inhibits LPS-induced expression of ICAM-1 and E-selectin on endothelial cells and carageenan-induced paw-edema in rats. Journal of Ethnopharmacology, 2003, 89, 211-216.	2.0	19
30	Diferuloylmethane Inhibits Neutrophil Infiltration and Improves Survival of Mice in High-Dose Endotoxin Shock. Shock, 2003, 19, 91-96.	1.0	38
31	Canscora decussata promotes adhesion of neutrophils to human umbilical vein endothelial cells. Journal of Ethnopharmacology, 2002, 79, 229-235.	2.0	9
32	Xanthones as inhibitors of microsomal lipid peroxidation and TNF-α induced ICAM-1 expression on human umbilical vein endothelial cells (HUVECs). Bioorganic and Medicinal Chemistry, 2002, 10, 3431-3436.	1.4	32
33	2′-Hydroxychalcone Inhibits Nuclear Factor-κB and Blocks Tumor Necrosis Factor-α- and Lipopolysaccharide-Induced Adhesion of Neutrophils to Human Umbilical Vein Endothelial Cells. Molecular Pharmacology, 2000, 58, 526-534.	1.0	75