
PALOMA ALONSO MAGDALENA

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7691287/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Screening of Relevant Metabolism-Disrupting Chemicals on Pancreatic Î ² -Cells: Evaluation of Murine and Human In Vitro Models. International Journal of Molecular Sciences, 2022, 23, 4182.	1.8	11
2	Morphological and functional adaptations of pancreatic alpha-cells during late pregnancy in the mouse. Metabolism: Clinical and Experimental, 2020, 102, 153963.	1.5	19
3	The Commonly Overlooked Factor. Commentary on: "Environmental Obesogens and their Impact on Susceptibility to Obesity― Endocrinology, 2020, 161, .	1.4	0
4	Bisphenol-A exposure during pregnancy alters pancreatic β-cell division and mass in male mice offspring: A role for ERβ. Food and Chemical Toxicology, 2020, 145, 111681.	1.8	10
5	Integrative Strategy of Testing Systems for Identification of Endocrine Disruptors Inducing Metabolic Disorders—An Introduction to the OBERON Project. International Journal of Molecular Sciences, 2020, 21, 2988.	1.8	38
6	Toxic Effects of Common Environmental Pollutants in Pancreatic β-Cells and the Onset of Diabetes Mellitus. , 2019, , 764-775.		7
7	Bisphenol A Regulates Sodium Ramp Currents in Mouse Dorsal Root Ganglion Neurons and Increases Nociception. Scientific Reports, 2019, 9, 10306.	1.6	9
8	Oestrogen receptor Î ² mediates the actions of bisphenol-A on ion channel expression in mouse pancreatic beta cells. Diabetologia, 2019, 62, 1667-1680.	2.9	46
9	Pancreatic alpha-cell mass in the early-onset and advanced stage of a mouse model of experimental autoimmune diabetes. Scientific Reports, 2019, 9, 9515.	1.6	25
10	In utero exposure to bisphenol-A disrupts key elements of retinoid system in male mice offspring. Food and Chemical Toxicology, 2019, 126, 142-151.	1.8	10
11	Cortistatin regulates glucose-induced electrical activity and insulin secretion in mouse pancreatic beta-cells. Molecular and Cellular Endocrinology, 2019, 479, 123-132.	1.6	5
12	Extranuclear-initiated estrogenic actions of endocrine disrupting chemicals: Is there toxicology beyond paracelsus?. Journal of Steroid Biochemistry and Molecular Biology, 2018, 176, 16-22.	1.2	63
13	Effects of bisphenol A treatment during pregnancy on kidney development in mice: a stereological and histopathological study. Journal of Developmental Origins of Health and Disease, 2018, 9, 208-214.	0.7	23
14	Timing of Exposure and Bisphenol-A: Implications for Diabetes Development. Frontiers in Endocrinology, 2018, 9, 648.	1.5	29
15	Mitochondria as target of endocrine-disrupting chemicals: implications for type 2 diabetes. Journal of Endocrinology, 2018, 239, R27-R45.	1.2	41
16	Endocrine-disrupting chemicals and the regulation of energy balance. Nature Reviews Endocrinology, 2017, 13, 536-546.	4.3	152
17	Molecular mechanisms involved in the non-monotonic effect of bisphenol-a on Ca2+ entry in mouse pancreatic β-cells. Scientific Reports, 2017, 7, 11770.	1.6	74
18	Effects of Bisphenol A on ion channels: Experimental evidence and molecular mechanisms. Steroids, 2016, 111, 12-20.	0.8	32

#	Article	IF	CITATIONS
19	Maternal Exposure to Bisphenol-A During Pregnancy Increases Pancreatic Î ² -Cell Growth During Early Life in Male Mice Offspring. Endocrinology, 2016, 157, 4158-4171.	1.4	59
20	Prenatal Exposure to BPA and Offspring Outcomes. Dose-Response, 2015, 13, 155932581559039.	0.7	51
21	Enhanced glucose-induced intracellular signaling promotes insulin hypersecretion: Pancreatic beta-cell functional adaptations in a model of genetic obesity and prediabetes. Molecular and Cellular Endocrinology, 2015, 404, 46-55.	1.6	44
22	Bisphenol-A Treatment During Pregnancy in Mice: A New Window of Susceptibility for the Development of Diabetes in Mothers Later in Life. Endocrinology, 2015, 156, 1659-1670.	1.4	115
23	Pancreatic alpha-cells from female mice undergo morphofunctional changes during compensatory adaptations of the endocrine pancreas to diet-induced obesity. Scientific Reports, 2015, 5, 11622.	1.6	32
24	Exposure to Bisphenol-A during Pregnancy Partially Mimics the Effects of a High-Fat Diet Altering Glucose Homeostasis and Gene Expression in Adult Male Mice. PLoS ONE, 2014, 9, e100214.	1.1	144
25	Nutrient regulation of glucagon secretion: involvement in metabolism and diabetes. Nutrition Research Reviews, 2014, 27, 48-62.	2.1	38
26	Inhibition of connexin 36 hemichannels by glucose contributes to the stimulation of insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1354-E1366.	1.8	12
27	Pancreatic Alpha-Cell Dysfunction Contributes to the Disruption of Glucose Homeostasis and Compensatory Insulin Hypersecretion in Clucocorticoid-Treated Rats. PLoS ONE, 2014, 9, e93531.	1.1	34
28	Estrogen Receptors Alpha and Beta in Male and Female Gerbil Prostates1. Biology of Reproduction, 2013, 88, 7.	1.2	19
29	Insulin Hypersecretion in Islets From Diet-Induced Hyperinsulinemic Obese Female Mice Is Associated With Several Functional Adaptations in Individual β-Cells. Endocrinology, 2013, 154, 3515-3524.	1.4	70
30	Antidiabetic Actions of an Estrogen Receptor β Selective Agonist. Diabetes, 2013, 62, 2015-2025.	0.3	49
31	Role of ERÎ ² and GPR30 in the endocrine pancreas: A matter of estrogen dose. Steroids, 2012, 77, 951-958.	0.8	28
32	Insulinotropic Effect of the Non-Steroidal Compound STX in Pancreatic Î ² -Cells. PLoS ONE, 2012, 7, e34650.	1.1	0
33	Rapid Insulinotropic Action of Low Doses of Bisphenol-A on Mouse and Human Islets of Langerhans: Role of Estrogen Receptor β. PLoS ONE, 2012, 7, e31109.	1.1	191
34	Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Molecular and Cellular Endocrinology, 2012, 355, 201-207.	1.6	276
35	Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice. PLoS ONE, 2012, 7, e33814.	1.1	150
36	Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nature Reviews Endocrinology, 2011, 7, 346-353.	4.3	341

#	Article	IF	CITATIONS
37	Regulation of KATP channel by $17\hat{l}^2$ -estradiol in pancreatic \hat{l}^2 -cells. Steroids, 2011, 76, 856-60.	0.8	6
38	Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells. Frontiers in Bioscience - Landmark, 2011, 16, 251.	3.0	39
39	Bisphenol A Exposure during Pregnancy Disrupts Glucose Homeostasis in Mothers and Adult Male Offspring. Environmental Health Perspectives, 2010, 118, 1243-1250.	2.8	392
40	A role for epithelial-mesenchymal transition in the etiology of benign prostatic hyperplasia. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2859-2863.	3.3	150
41	Rapid Regulation of KATP Channel Activity by 17β-Estradiol in Pancreatic β-Cells Involves the Estrogen Receptor β and the Atrial Natriuretic Peptide Receptor. Molecular Endocrinology, 2009, 23, 1973-1982.	3.7	89
42	The role of oestrogens in the adaptation of islets to insulin resistance. Journal of Physiology, 2009, 587, 5031-5037.	1.3	114
43	Spatiotemporal dynamics of the expression of estrogen receptors in the postnatal mouse brain. Molecular Psychiatry, 2009, 14, 223-232.	4.1	41
44	Abnormally large, heavy brain with a decreased number of apoptotic cells in CYP7B1 knockout mice. Molecular Psychiatry, 2009, 14, 117-117.	4.1	3
45	The pancreatic Î ² -cell as a target of estrogens and xenoestrogens: Implications for blood glucose homeostasis and diabetes. Molecular and Cellular Endocrinology, 2009, 304, 63-68.	1.6	253
46	Bisphenolâ€A disruption of the endocrine pancreas and blood glucose homeostasis. Journal of Developmental and Physical Disabilities, 2008, 31, 194-200.	3.6	171
47	The role of estrogen receptors in the control of energy and glucose homeostasis. Steroids, 2008, 73, 874-879.	0.8	135
48	Rapid Regulation of Pancreatic α- and β- Cell Signalling Systems by Estrogens. Infectious Disorders - Drug Targets, 2008, 8, 61-64.	0.4	15
49	Pancreatic Insulin Content Regulation by the Estrogen Receptor ERα. PLoS ONE, 2008, 3, e2069.	1.1	352
50	Rapid endocrine disruption: Environmental estrogen actions triggered outside the nucleus. Journal of Steroid Biochemistry and Molecular Biology, 2006, 102, 163-169.	1.2	59
51	Genistein Affects Adipose Tissue Deposition in a Dose-Dependent and Gender-Specific Manner. Endocrinology, 2006, 147, 5740-5751.	1.4	178
52	The Estrogenic Effect of Bisphenol A Disrupts Pancreatic β-Cell Function In Vivo and Induces Insulin Resistance. Environmental Health Perspectives, 2006, 114, 106-112.	2.8	519
53	Glucose Induces Opposite Intracellular Ca2+Concentration Oscillatory Patterns in Identified α- and β-Cells Within Intact Human Islets of Langerhans. Diabetes, 2006, 55, 2463-2469.	0.3	89
54	Disentangling the molecular mechanisms of action of endogenous and environmental estrogens. Pflugers Archiv European Journal of Physiology, 2005, 449, 335-343.	1.3	29

#	Article	IF	CITATIONS
55	Low Doses of Bisphenol A and Diethylstilbestrol Impair Ca 2+ Signals in Pancreatic α-Cells through a Nonclassical Membrane Estrogen Receptor within Intact Islets of Langerhans. Environmental Health Perspectives, 2005, 113, 969-977.	2.8	254
56	Quantitative histochemical assessment of oxidative metabolism in the subfornical organ after partial aortic ligature in rats. Neuroscience Letters, 2003, 344, 49-52.	1.0	1