Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7691201/publications.pdf

Version: 2024-02-01

27	1,554	20	27
papers	citations	h-index	g-index
27	27	27	1212
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Continuous cyclic wet heating glycation to prepare myofibrillar protein-glucose conjugates: A study on the structures, solubility and emulsifying properties. Food Chemistry, 2022, 388, 133035.	8.2	23
2	Interactions of water-soluble myofibrillar protein with chitosan: Phase behavior, microstructure and rheological properties. Innovative Food Science and Emerging Technologies, 2022, 78, 103013.	5. 6	18
3	Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 458-500.	11.7	52
4	Glycation-induced structural modification of myofibrillar protein and its relation to emulsifying properties. LWT - Food Science and Technology, 2020, 117, 108664.	5.2	62
5	Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: Effects of pulsed electric field (PEF). Innovative Food Science and Emerging Technologies, 2020, 59, 102277.	5.6	60
6	Modification of myofibrillar protein via glycation: Physicochemical characterization, rheological behavior and solubility property. Food Hydrocolloids, 2020, 105, 105852.	10.7	77
7	Phosphoproteome analysis of sarcoplasmic and myofibrillar proteins in stress-induced dysfunctional broiler pectoralis major muscle. Food Chemistry, 2020, 319, 126531.	8.2	9
8	(-)-Epigallocatechin-3-gallate-mediated formation of myofibrillar protein emulsion gels under malondialdehyde-induced oxidative stress. Food Chemistry, 2019, 285, 139-146.	8.2	55
9	Stress Effects on Meat Quality: A Mechanistic Perspective. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 380-401.	11.7	126
10	Improved gelation functionalities of myofibrillar protein from pale, soft and exudative chicken breast meat by nonenzymatic glycation with glucosamine. International Journal of Food Science and Technology, 2018, 53, 2006-2014.	2.7	21
11	Rheological behavior, conformational changes and interactions of water-soluble myofibrillar protein during heating. Food Hydrocolloids, 2018, 77, 524-533.	10.7	101
12	Transcriptome Analysis of the Global Response of Pseudomonas fragi NMC25 to Modified Atmosphere Packaging Stress. Frontiers in Microbiology, 2018, 9, 1277.	3.5	12
13	Inhibition of Epigallocatechin-3-gallate/Protein Interaction by Methyl-β-cyclodextrin in Myofibrillar Protein Emulsion Gels under Oxidative Stress. Journal of Agricultural and Food Chemistry, 2018, 66, 8094-8103.	5.2	30
14	Modified atmosphere packaging decreased Pseudomonas fragi cell metabolism and extracellular proteolytic activities on meat. Food Microbiology, 2018, 76, 443-449.	4.2	39
15	Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities. Critical Reviews in Food Science and Nutrition, 2017, 57, 3260-3280.	10.3	96
16	Emulsifying Properties of Oxidatively Stressed Myofibrillar Protein Emulsion Gels Prepared with (â^)-Epigallocatechin-3-gallate and NaCl. Journal of Agricultural and Food Chemistry, 2017, 65, 2816-2826.	5.2	86
17	Incorporated glucosamine adversely affects the emulsifying properties of whey protein isolate polymerized by transglutaminase. Journal of Dairy Science, 2017, 100, 3413-3423.	3.4	12
18	Proteome Analysis Using Isobaric Tags for Relative and Absolute Analysis Quantitation (iTRAQ) Reveals Alterations in Stress-Induced Dysfunctional Chicken Muscle. Journal of Agricultural and Food Chemistry, 2017, 65, 2913-2922.	5.2	43

#	Article	IF	CITATION
19	Characterization of Extracellular Polymeric Substances Produced by <i>Pseudomonas fragi</i> Under Air and Modified Atmosphere Packaging. Journal of Food Science, 2017, 82, 2151-2157.	3.1	14
20	Structural modification by high-pressure homogenization for improved functional properties of freeze-dried myofibrillar proteins powder. Food Research International, 2017, 100, 193-200.	6.2	124
21	Effect of transportation and preâ€slaughter water shower spray with resting on AMPâ€activated protein kinase, glycolysis and meat quality of broilers during summer. Animal Science Journal, 2016, 87, 299-307.	1.4	29
22	Potential of high pressure homogenization to solubilize chicken breast myofibrillar proteins in water. Innovative Food Science and Emerging Technologies, 2016, 33, 170-179.	5.6	131
23	Phosphorproteome Changes of Myofibrillar Proteins at Early Post-mortem Time in Relation to Pork Quality As Affected by Season. Journal of Agricultural and Food Chemistry, 2015, 63, 10287-10294.	5.2	20
24	High CO2-modified atmosphere packaging for extension of shelf-life of chilled yellow-feather broiler meat: A special breed in Asia. LWT - Food Science and Technology, 2015, 64, 1123-1129.	5.2	50
25	Effect of fasting on energy metabolism and tenderizing enzymes in chicken breast muscle early postmortem. Meat Science, 2013, 93, 865-872.	5.5	53
26	Biofilm Formation of Salmonella Serotypes in Simulated Meat Processing Environments and Its Relationship to Cell Characteristics. Journal of Food Protection, 2013, 76, 1784-1789.	1.7	54
27	Effect of microbial transglutaminase on NMR relaxometry and microstructure of pork myofibrillar protein gel. European Food Research and Technology, 2009, 228, 665-670.	3.3	157