List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7691170/publications.pdf Version: 2024-02-01

Ρεγλ Ρλγλυ

#	Article	IF	CITATIONS
1	Native T1 Mapping in Differentiation of Normal Myocardium From Diffuse Disease in Hypertrophic and Dilated Cardiomyopathy. JACC: Cardiovascular Imaging, 2013, 6, 475-484.	2.3	386
2	Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet, The, 2003, 362, 1877-1882.	6.3	312
3	A study of the motion and deformation of the heart due to respiration. IEEE Transactions on Medical Imaging, 2002, 21, 1142-1150.	5.4	232
4	Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. European Journal of Cardio-thoracic Surgery, 2017, 52, 1139-1148.	0.6	191
5	Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nature Medicine, 2011, 17, 383-388.	15.2	161
6	A system for real-time XMR guided cardiovascular intervention. IEEE Transactions on Medical Imaging, 2005, 24, 1428-1440.	5.4	157
7	Cardiac anatomy revisited. Journal of Anatomy, 2004, 205, 159-177.	0.9	156
8	MR Coronary Angiography and Late-Enhancement Myocardial MR in Children Who Underwent Arterial Switch Surgery for Transposition of Great Arteries. Radiology, 2005, 234, 542-547.	3.6	142
9	Benchmark for Algorithms Segmenting the Left Atrium From 3D CT and MRI Datasets. IEEE Transactions on Medical Imaging, 2015, 34, 1460-1473.	5.4	140
10	Wholeâ€heart coronary MR angiography with 2D selfâ€navigated image reconstruction. Magnetic Resonance in Medicine, 2012, 67, 437-445.	1.9	135
11	Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovascular Research, 2011, 89, 336-343.	1.8	133
12	Invasive Acute Hemodynamic Response to Guide Left Ventricular Lead Implantation Predicts Chronic Remodeling in Patients Undergoing Cardiac Resynchronization Therapy. Journal of the American College of Cardiology, 2011, 58, 1128-1136.	1.2	129
13	Acute Pulmonary Vein Isolation Is Achieved by a Combination of Reversible and Irreversible Atrial Injury After Catheter Ablation. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 691-700.	2.1	126
14	MRI-Compatible Fiber-Optic Force Sensors for Catheterization Procedures. IEEE Sensors Journal, 2010, 10, 1598-1608.	2.4	115
15	Fully Automated, Quality-Controlled Cardiac Analysis From CMR. JACC: Cardiovascular Imaging, 2020, 13, 684-695.	2.3	113
16	Myocardial tissue characterization by cardiac magnetic resonance imaging using T1 mapping predicts ventricular arrhythmia in ischemic and non–ischemic cardiomyopathy patients with implantable cardioverter-defibrillators. Heart Rhythm, 2015, 12, 792-801.	0.3	112
17	Registration and tracking to integrate X-ray and MR images in an XMR facility. IEEE Transactions on Medical Imaging, 2003, 22, 1369-1378.	5.4	111
18	Inflow Typology and Ventricular Geometry Determine Efficiency of Filling in the Hypoplastic Left Heart. Annals of Thoracic Surgery, 2012, 94, 1562-1569.	0.7	103

#	Article	IF	CITATIONS
19	Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. Interface Focus, 2011, 1, 396-407.	1.5	101
20	Triaxial Catheter-Tip Force Sensor for MRI-Guided Cardiac Procedures. IEEE/ASME Transactions on Mechatronics, 2013, 18, 386-396.	3.7	95
21	Psychosocial impact of the COVID-19 pandemic on 4378 UK healthcare workers and ancillary staff: initial baseline data from a cohort study collected during the first wave of the pandemic. Occupational and Environmental Medicine, 2021, 78, 801-808.	1.3	95
22	Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study. Lancet, The, 2019, 393, 1619-1627.	6.3	94
23	Registration of 3D trans-esophageal echocardiography to X-ray fluoroscopy using image-based probe tracking. Medical Image Analysis, 2012, 16, 38-49.	7.0	91
24	The estimation of patient-specific cardiac diastolic functions from clinical measurements. Medical Image Analysis, 2013, 17, 133-146.	7.0	91
25	Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images. Medical Image Analysis, 2016, 30, 95-107.	7.0	90
26	3-D Visualization of Acute RF Ablation Lesions Using MRI for the Simultaneous Determination of the Patterns of Necrosis and Edema. IEEE Transactions on Biomedical Engineering, 2010, 57, 1467-1475.	2.5	89
27	Cardiac Magnetic Resonance Imaging After Stage I Norwood Operation for Hypoplastic Left Heart Syndrome. Circulation, 2005, 112, 3256-3263.	1.6	83
28	A comparison of left ventricular endocardial, multisite, and multipolar epicardial cardiac resynchronization: an acute haemodynamic and electroanatomical study. Europace, 2014, 16, 873-879.	0.7	76
29	Magnetic Resonance–Guided Cardiac Interventions Using Magnetic Resonance–Compatible Devices. Circulation: Cardiovascular Interventions, 2010, 3, 585-592.	1.4	75
30	Prognostic Value of Quantitative Stress Perfusion Cardiac Magnetic Resonance. JACC: Cardiovascular Imaging, 2018, 11, 686-694.	2.3	72
31	Benefits of Endocardial and Multisite Pacing Are Dependent on the Type of Left Ventricular Electric Activation Pattern and Presence of Ischemic Heart Disease. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 889-897.	2.1	71
32	Quantitative Magnetic Resonance Imaging Analysis of the Relationship Between Contact Force and Left Atrial Scar Formation After Catheter Ablation of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 2014, 25, 138-145.	0.8	70
33	A Simultaneous X-Ray/MRI and Noncontact Mapping Study of the Acute Hemodynamic Effect of Left Ventricular Endocardial and Epicardial Cardiac Resynchronization Therapy in Humans. Circulation: Heart Failure, 2011, 4, 170-179.	1.6	67
34	Model-Based Imaging of Cardiac Apparent Conductivity and Local Conduction Velocity for Diagnosis and Planning of Therapy. IEEE Transactions on Medical Imaging, 2008, 27, 1631-1642.	5.4	63
35	A new method for quantification of false lumen thrombosis in aortic dissection using magnetic resonance imaging and a blood pool contrast agent. Journal of Vascular Surgery, 2011, 54, 1251-1258.	0.6	62
36	Relationship between endocardial activation sequences defined by high-density mapping to early septal contraction (septal flash) in patients with left bundle branch block undergoing cardiac resynchronization therapy. Europace, 2012, 14, 99-106.	0.7	61

#	Article	IF	CITATIONS
37	Studying Dynamic Myofiber Aggregate Reorientation in Dilated Cardiomyopathy Using In Vivo Magnetic Resonance Diffusion Tensor Imaging. Circulation: Cardiovascular Imaging, 2016, 9, .	1.3	58
38	Renal vascular inflammation induced by Western diet in ApoE-null mice quantified by 19F NMR of VCAM-1 targeted nanobeacons. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 359-367.	1.7	57
39	Estimation of passive and active properties in the human heart using 3D tagged MRI. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1121-1139.	1.4	55
40	Serial Magnetic Resonance Imaging in Hypoplastic Left Heart Syndrome Gives Valuable Insight Into Ventricular and Vascular Adaptation. Journal of the American College of Cardiology, 2013, 61, 561-570.	1.2	54
41	In-silico modeling of atrial repolarization in normal and atrial fibrillation remodeled state. Medical and Biological Engineering and Computing, 2013, 51, 1105-1119.	1.6	51
42	Patient-specific modeling of atrial fibrosis increases the accuracy of sinus rhythm simulations and may explain maintenance of atrial fibrillation. Journal of Electrocardiology, 2014, 47, 324-328.	0.4	48
43	Optimized Left Ventricular Endocardial StimulationÂls Superior to Optimized EpicardialÂStimulation in Ischemic Patients WithÂPoor Response to Cardiac ResynchronizationÂTherapy. JACC: Clinical Electrophysiology, 2016, 2, 799-809.	1.3	48
44	Comprehensive use of cardiac computed tomography to guide left ventricular lead placement in cardiac resynchronization therapy. Heart Rhythm, 2017, 14, 1364-1372.	0.3	48
45	3D undersampled goldenâ€radial phase encoding for DCEâ€MRA using inherently regularized iterative SENSE. Magnetic Resonance in Medicine, 2010, 64, 514-526.	1.9	47
46	Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI. Biomechanics and Modeling in Mechanobiology, 2015, 14, 807-828.	1.4	47
47	Beneficial Effect on Cardiac Resynchronization From Left Ventricular Endocardial Pacing Is Mediated by Early Access to High Conduction Velocity Tissue. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1164-1172.	2.1	47
48	Prospective respiratory motion correction for coronary MR angiography using a 2D image navigator. Magnetic Resonance in Medicine, 2013, 69, 486-494.	1.9	46
49	The reproducibility of late gadolinium enhancement cardiovascular magnetic resonance imaging of post-ablation atrial scar: a cross-over study. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 21.	1.6	46
50	Mitogen-activated Protein Kinase Phosphorylates and Targets Inducible cAMP Early Repressor to Ubiquitin-mediated Destruction. Journal of Biological Chemistry, 2001, 276, 35272-35279.	1.6	44
51	Initial Singleâ€Center Experience of a Quadripolar Pacing Lead for Cardiac Resynchronization Therapy. PACE - Pacing and Clinical Electrophysiology, 2011, 34, 484-489.	0.5	44
52	An exploration of the potential utility of fetal cardiovascular MRI as an adjunct to fetal echocardiography. Prenatal Diagnosis, 2016, 36, 916-925.	1.1	44
53	Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection. Magnetic Resonance in Medicine, 2018, 79, 327-338.	1.9	44
54	In Vivo Assessment of Aortic Aneurysm Wall Integrity Using Elastin-Specific Molecular Magnetic Resonance Imaging. Circulation: Cardiovascular Imaging, 2014, 7, 679-689.	1.3	43

#	Article	IF	CITATIONS
55	Microvascular ischemia in hypertrophic cardiomyopathy: new insights from high-resolution combined quantification of perfusion and late gadolinium enhancement. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 4.	1.6	43
56	Mechanistic insights into the benefits of multisite pacing in cardiac resynchronization therapy: The importance of electrical substrate and rate of left ventricular activation. Heart Rhythm, 2015, 12, 2449-2457.	0.3	43
57	Wholeâ€Heart Coronary <scp>MRA</scp> with 3D Affine Motion Correction Using 3D Imageâ€Based Navigation. Magnetic Resonance in Medicine, 2014, 71, 173-181.	1.9	42
58	Monitoring of In Vivo Function of Superparamagnetic Iron Oxide Labelled Murine Dendritic Cells during Anti-Tumour Vaccination. PLoS ONE, 2011, 6, e19662.	1.1	42
59	Noninvasive Assessment of LV Contraction Patterns Using CMR toÂldentify Responders to CRT. JACC: Cardiovascular Imaging, 2013, 6, 864-873.	2.3	41
60	A prospective evaluation of cardiovascular magnetic resonance measures of dyssynchrony in the prediction of response to cardiac resynchronization therapy. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 58.	1.6	41
61	An activation-repolarization time metric to predict localized regions of high susceptibility to reentry. Heart Rhythm, 2015, 12, 1644-1653.	0.3	40
62	Algorithms for left atrial wall segmentation and thickness – Evaluation on an open-source CT and MRI image database. Medical Image Analysis, 2018, 50, 36-53.	7.0	40
63	Volumetric Cardiac Quantification by Using 3D Dual-Phase Whole-Heart MR Imaging. Radiology, 2008, 248, 606-614.	3.6	39
64	Towards personalized clinical in-silico modeling of atrial anatomy and electrophysiology. Medical and Biological Engineering and Computing, 2013, 51, 1251-1260.	1.6	39
65	Focal But Not Diffuse Myocardial Fibrosis Burden Quantification Using Cardiac Magnetic Resonance Imaging Predicts Left Ventricular Reverse Modeling Following Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 2016, 27, 203-209.	0.8	39
66	Congenital Heart Disease: Cardiovascular MR Imaging by Using an Intravascular Blood Pool Contrast Agent. Radiology, 2011, 260, 680-688.	3.6	38
67	The relative role of patient physiology and device optimisation in cardiac resynchronisation therapy: A computational modelling study. Journal of Molecular and Cellular Cardiology, 2016, 96, 93-100.	0.9	38
68	Real-Time X-MRI-Guided Left Ventricular Lead Implantation for Targeted Delivery ofÂCardiac Resynchronization Therapy. JACC: Clinical Electrophysiology, 2017, 3, 803-814.	1.3	37
69	Fetal wholeâ€heart 4D imaging using motionâ€corrected multiâ€planar realâ€time MRI. Magnetic Resonance in Medicine, 2019, 82, 1055-1072.	1.9	37
70	Analysis of 3-Dimensional Arch Anatomy, Vascular Flow, and Postnatal Outcome in Cases of Suspected Coarctation of the Aorta Using Fetal Cardiac Magnetic Resonance Imaging. Circulation: Cardiovascular Imaging, 2021, 14, e012411.	1.3	37
71	Cardiac MRI to investigate myocardial scar and coronary venous anatomy using a slow infusion of dimeglumine gadobenate in patients undergoing assessment for cardiac resynchronization therapy. Journal of Magnetic Resonance Imaging, 2011, 33, 87-95.	1.9	35
72	A U-shaped type II contraction pattern in patients with strict left bundle branch block predicts super-response to cardiac resynchronization therapy. Heart Rhythm, 2014, 11, 1790-1797.	0.3	35

#	Article	IF	CITATIONS
73	Toward Patient-Specific Myocardial Models of the Heart. Heart Failure Clinics, 2008, 4, 289-301.	1.0	34
74	Detection and Grading of Coronary Allograft Vasculopathy in Children With Contrast-Enhanced Magnetic Resonance Imaging of the Coronary Vessel Wall. Circulation: Cardiovascular Imaging, 2013, 6, 91-98.	1.3	34
75	Magnetic resonance imaging catheter stress haemodynamics post-Fontan in hypoplastic left heart syndrome. European Heart Journal Cardiovascular Imaging, 2016, 17, 644-651.	0.5	34
76	Optimization of late gadolinium enhancement cardiovascular magnetic resonance imaging of post-ablation atrial scar: a cross-over study. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 30.	1.6	34
77	The importance of early involvement of paediatric palliative care for patients with severe congenital heart disease. Archives of Disease in Childhood, 2016, 101, 984-987.	1.0	33
78	Non-invasive Model-Based Assessment of Passive Left-Ventricular Myocardial Stiffness in Healthy Subjects and in Patients with Non-ischemic Dilated Cardiomyopathy. Annals of Biomedical Engineering, 2017, 45, 605-618.	1.3	33
79	Simultaneous multi slice (SMS) balanced steady state free precession first-pass myocardial perfusion cardiovascular magnetic resonance with iterative reconstruction at 1.5ÂT. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 84.	1.6	33
80	Importance of operator training and rest perfusion on the diagnostic accuracy of stress perfusion cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 74.	1.6	33
81	ICER-IlÎ ³ is a tumor suppressor that mediates the antiproliferative activity of cAMP. Oncogene, 1998, 17, 3015-3019.	2.6	32
82	Advanced Image Fusion to Overlay Coronary Sinus Anatomy with Realâ€Time Fluoroscopy to Facilitate Left Ventricular Lead Implantation in CRT. PACE - Pacing and Clinical Electrophysiology, 2011, 34, 226-234.	0.5	32
83	Three-dimensional Dual-Phase Whole-Heart MR Imaging: Clinical Implications for Congenital Heart Disease. Radiology, 2012, 263, 547-554.	3.6	32
84	Congenital Heart Disease in Children: Coronary MR Angiography during Systole and Diastole with Dual Cardiac Phase Whole-Heart Imaging. Radiology, 2011, 260, 232-240.	3.6	31
85	Biophysical Modeling Predicts Ventricular Tachycardia Inducibility and Circuit Morphology: A Combined Clinical Validation and Computer Modeling Approach. Journal of Cardiovascular Electrophysiology, 2016, 27, 851-860.	0.8	31
86	The Effect of Contact Force in Atrial RadiofrequencyÂAblation. JACC: Clinical Electrophysiology, 2015, 1, 421-431.	1.3	30
87	Pulmonary Artery Pressures in School-Age Children Born Prematurely. Journal of Pediatrics, 2017, 191, 42-49.e3.	0.9	30
88	Alterations of atrial electrophysiology related to hemodialysis session: insights from a multiscale computer model. Journal of Electrocardiology, 2011, 44, 176-183.	0.4	29
89	Dobutamine stress MRI in repaired tetralogy of Fallot with chronic pulmonary regurgitation. International Journal of Cardiology, 2013, 166, 96-105.	0.8	29
90	In vivo evaluation and proof of radiofrequency safety of a novel diagnostic MRâ€electrophysiology catheter. Magnetic Resonance in Medicine, 2011, 65, 770-777.	1.9	28

#	Article	IF	CITATIONS
91	Realistic aortic phantom to study hemodynamics using MRI and cardiac catheterization in normal and aortic coarctation conditions. Journal of Magnetic Resonance Imaging, 2016, 44, 683-697.	1.9	28
92	Age-related changes in intraventricular kinetic energy: a physiological or pathological adaptation?. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H747-H755.	1.5	28
93	Cost-Effectiveness Analysis of QuadripolarÂVersus Bipolar Left Ventricular Leads for Cardiac Resynchronization Defibrillator TherapyÂinÂa Large, Multicenter UKÂRegistry. JACC: Clinical Electrophysiology, 2017, 3, 107-116.	1.3	28
94	Relationship between vectorcardiographic QRSarea, myocardial scar quantification, and response to cardiac resynchronization therapy. Journal of Electrocardiology, 2018, 51, 457-463.	0.4	28
95	Automated quantification of myocardial tissue characteristics from native T1 mapping using neural networks with uncertainty-based quality-control. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 60.	1.6	28
96	Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-intermediate risk of coronary artery disease: a single center trial. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 57.	1.6	28
97	Surface flattening of the human left atrium and proof-of-concept clinical applications. Computerized Medical Imaging and Graphics, 2014, 38, 251-266.	3.5	26
98	Design, Operation, and Safety of Singleâ€Room Interventional MRI Suites: Practical Experience From Two Centers. Journal of Magnetic Resonance Imaging, 2015, 41, 34-43.	1.9	26
99	Fetal whole heart blood flow imaging using 4D cine MRI. Nature Communications, 2020, 11, 4992.	5.8	26
100	Fairness in Cardiac Magnetic Resonance Imaging: Assessing Sex and Racial Bias in Deep Learning-Based Segmentation. Frontiers in Cardiovascular Medicine, 2022, 9, 859310.	1.1	26
101	Noninvasive Assessment of Pulmonary Artery Flow and Resistance by Cardiac Magnetic Resonance in Congenital Heart Diseases With Unrestricted Left-to-Right Shunt. JACC: Cardiovascular Imaging, 2009, 2, 1285-1291.	2.3	25
102	Feasibility of high-resolution quantitative perfusion analysis in patients with heart failure. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 13.	1.6	25
103	Pressure–volume loop-derived cardiac indices during dobutamine stress: a step towards understanding limitations in cardiac output in children with hypoplastic left heart syndrome. International Journal of Cardiology, 2017, 230, 439-446.	0.8	25
104	Epicardial electroanatomical mapping, radiofrequency ablation, and lesion imaging in the porcine left ventricle under real-time magnetic resonance imaging guidance—an in vivo feasibility study. Europace, 2018, 20, f254-f262.	0.7	25
105	Reproducibility of Atrial Fibrosis Assessment Using CMR Imaging and an Open Source Platform. JACC: Cardiovascular Imaging, 2019, 12, 2076-2077.	2.3	25
106	Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy. Scientific Reports, 2019, 9, 1375.	1.6	25
107	Mental health among UK university staff and postgraduate students in the early stages of the COVID-19 pandemic. Occupational and Environmental Medicine, 2022, 79, 259-267.	1.3	25
108	Diagnostic Role of Magnetic Resonance Imaging in Identifying Aortic Arch Anomalies. Congenital Heart Disease, 2008, 3, 117-123.	0.0	24

#	Article	IF	CITATIONS
109	3D T 1-mapping for the characterization of deep vein thrombosis. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2009, 22, 375-383.	1.1	24
110	Effect of Mental Challenge Induced by Movie Clips on Action Potential Duration in Normal Human Subjects Independent of Heart Rate. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 518-523.	2.1	24
111	Magnetic resonance imaging guidance for the optimization of ventricular tachycardia ablation. Europace, 2018, 20, 1721-1732.	0.7	24
112	Hybrid laser/arc welding of 304L stainless steel tubes, part 2 – Effect of filler wires on microstructure and corrosion behavior. International Journal of Pressure Vessels and Piping, 2018, 163, 45-54.	1.2	24
113	Mean entropy predicts implantable cardioverter-defibrillator therapy using cardiac magnetic resonance texture analysis of scar heterogeneity. Heart Rhythm, 2019, 16, 1242-1250.	0.3	24
114	Interventional Cardiac Magnetic Resonance Imaging in Electrophysiology. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 203-211.	2.1	23
115	Emerging role of cardiac computed tomography in heart failure. ESC Heart Failure, 2019, 6, 909-920.	1.4	23
116	Right ventricular morphology and function following stage I palliation with a modified Blalock–Taussig shunt versus a right ventricle-to-pulmonary artery conduit. European Journal of Cardio-thoracic Surgery, 2017, 51, 50-57.	0.6	22
117	Improved passive catheter tracking with positive contrast for CMR-guided cardiac catheterization using partial saturation (pSAT). Journal of Cardiovascular Magnetic Resonance, 2016, 19, 60.	1.6	22
118	Beat-to-Beat Variability of Ventricular Action Potential Duration Oscillates at Low Frequency During Sympathetic Provocation in Humans. Frontiers in Physiology, 2018, 9, 147.	1.3	22
119	Advances in Real-Time MRI–Guided Electrophysiology. Current Cardiovascular Imaging Reports, 2019, 12, 6.	0.4	22
120	The Acute Hemodynamic Response to LV Pacing within Individual Branches of the Coronary Sinus using a Quadripolar Lead. PACE - Pacing and Clinical Electrophysiology, 2012, 35, 196-203.	0.5	20
121	Nonâ€contrast enhanced simultaneous 3D wholeâ€heart brightâ€blood pulmonary veins visualization and blackâ€blood quantification of atrial wall thickness. Magnetic Resonance in Medicine, 2019, 81, 1066-1079.	1.9	20
122	NHS CHECK: protocol for a cohort study investigating the psychosocial impact of the COVID-19 pandemic on healthcare workers. BMJ Open, 2021, 11, e051687.	0.8	20
123	Intra-Atrial Conduction Delay Revealed by Multisite Incremental Atrial Pacing is an Independent Marker of Remodeling in Human Atrial Fibrillation. JACC: Clinical Electrophysiology, 2017, 3, 1006-1017.	1.3	19
124	Autonomic Modulation in Patients with Heart Failure Increases Beat-to-Beat Variability of Ventricular Action Potential Duration. Frontiers in Physiology, 2017, 8, 328.	1.3	19
125	MR-guided Cardiac Interventions. Topics in Magnetic Resonance Imaging, 2018, 27, 115-128.	0.7	19
126	Artificial intelligence, fetal echocardiography, and congenital heart disease. Prenatal Diagnosis, 2021, 41. 733-742.	1.1	19

#	Article	IF	CITATIONS
127	Abnormal Myocardial Perfusion in Kawasaki Disease Convalescence. JACC: Cardiovascular Imaging, 2015, 8, 106-108.	2.3	18
128	Dobutamine stress testing in patients with Fontan circulation augmented by biomechanical modeling. PLoS ONE, 2020, 15, e0229015.	1.1	18
129	Cardiac magnetic resonance feature tracking in Kawasaki disease convalescence. Annals of Pediatric Cardiology, 2017, 10, 18-25.	0.2	18
130	Understanding the need of ventricular pressure for the estimation of diastolic biomarkers. Biomechanics and Modeling in Mechanobiology, 2014, 13, 747-757.	1.4	17
131	Velocity-based cardiac contractility personalization from images using derivative-free optimization. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 43, 35-52.	1.5	17
132	Substrateâ€dependent risk stratification for implantable cardioverter defibrillator therapies using cardiac magnetic resonance imaging: The importance of T1 mapping in nonischemic patients. Journal of Cardiovascular Electrophysiology, 2017, 28, 785-795.	0.8	17
133	Ventricular function and vascular dimensions after Norwood and hybrid palliation of hypoplastic left heart syndrome. Heart, 2018, 104, 244-252.	1.2	17
134	A comprehensive multiâ€index cardiac magnetic resonanceâ€guided assessment of atrial fibrillation substrate prior to ablation: Prediction of longâ€ŧerm outcomes. Journal of Cardiovascular Electrophysiology, 2019, 30, 1894-1903.	0.8	17
135	Disruption of intracardiac flow patterns in the newborn infant. Pediatric Research, 2012, 71, 380-385.	1.1	16
136	Cardiovascular Magnetic Resonance Imaging in Congenital Heart Disease as an Alternative to Diagnostic Invasive Cardiac Catheterization: A Single Center Experience. Congenital Heart Disease, 2013, 8, 322-327.	0.0	16
137	An Asymmetric Wall-Thickening Pattern Predicts Response to Cardiac Resynchronization Therapy. JACC: Cardiovascular Imaging, 2018, 11, 1545-1546.	2.3	16
138	MRI for Guided Right and Left Heart Cardiac Catheterization: A Prospective Study in Congenital Heart Disease. Journal of Magnetic Resonance Imaging, 2021, 53, 1446-1457.	1.9	16
139	T2* placental MRI in pregnancies complicated with fetal congenital heart disease. Placenta, 2021, 108, 23-31.	0.7	16
140	Exploring a new paradigm for the fetal anomaly ultrasound scan: Artificial intelligence in real time. Prenatal Diagnosis, 2022, 42, 49-59.	1.1	16
141	Myocardial delineation via registration in a polar coordinate system1. Academic Radiology, 2003, 10, 1349-1358.	1.3	15
142	Virtual cardiotomy based on 3-D MRI for preoperative planning in congenital heart disease. Pediatric Radiology, 2008, 38, 1314-1322.	1.1	15
143	Delayed Trans-Septal Activation Results in Comparable Hemodynamic Effect of Left Ventricular and Biventricular Endocardial Pacing. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 251-258.	2.1	15
144	Combined simultaneous multislice bSSFP and compressed sensing for firstâ€pass myocardial perfusion at 1.5 T with high spatial resolution and coverage. Magnetic Resonance in Medicine, 2020, 84, 3103-3116.	1.9	15

#	Article	IF	CITATIONS
145	Cardiac Electrophysiology Under MRI Guidance: an Emerging Technology. Arrhythmia and Electrophysiology Review, 2017, 6, 85.	1.3	15
146	Current concepts relating coronary flow, myocardial perfusion and metabolism in left bundle branch block and cardiac resynchronisation therapy. International Journal of Cardiology, 2015, 181, 65-72.	0.8	14
147	Usefulness of Cardiac Magnetic Resonance Imaging to Measure Left Ventricular Wall Thickness for Determining Risk Scores for Sudden Cardiac Death in Patients With HypertrophicÂCardiomyopathy. American Journal of Cardiology, 2017, 119, 1450-1455.	0.7	14
148	Feasibility of intraprocedural integration of cardiac CT to guide left ventricular lead implantation for CRT upgrades. Journal of Cardiovascular Electrophysiology, 2021, 32, 802-812.	0.8	14
149	Automated Quantitative Stress Perfusion Cardiac Magnetic Resonance in Pediatric Patients. Frontiers in Pediatrics, 2021, 9, 699497.	0.9	14
150	Role of magnetic resonance imaging in different ways of presentation of Ebstein's anomaly. Journal of Cardiovascular Medicine, 2008, 9, 628-630.	0.6	13
151	A Novel Cardiac MRI Protocol To Guide Successful Cardiac Resynchronization Therapy Implantation. Circulation: Heart Failure, 2010, 3, e18-21.	1.6	13
152	Cardiovascular MR dobutamine stress in adult tetralogy of fallot: Disparity between CMR volumetry and flow for cardiovascular function. Journal of Magnetic Resonance Imaging, 2011, 33, 1341-1350.	1.9	13
153	Realtime fusion of cardiac magnetic resonance imaging and computed tomography venography with X-ray fluoroscopy to aid cardiac resynchronisation therapy implantation in patients with persistent left superior vena cava. Europace, 2011, 13, 285-286.	0.7	13
154	A Phase I Trial of Thermal Sensitization Using Induced Oxidative Stress in the Context of HIPEC. Annals of Surgical Oncology, 2013, 20, 1843-1850.	0.7	13
155	Patient-specific modeling of right coronary circulation vulnerability post-liver transplant in Alagille's syndrome. PLoS ONE, 2018, 13, e0205829.	1.1	13
156	Recombinant Complement Receptor 2 Radiolabeled with [99mTc(CO)3]+ : A Potential New Radiopharmaceutical for Imaging Activated Complement. PLoS ONE, 2011, 6, e18275.	1.1	13
157	The neurodevelopmental implications of hypoplastic left heart syndrome in the fetus. Cardiology in the Young, 2017, 27, 217-223.	0.4	12
158	Assessing the ability of substrate mapping techniques to guide ventricular tachycardia ablation using computational modelling. Computers in Biology and Medicine, 2021, 130, 104214.	3.9	12
159	Prospective highâ€resolution respiratoryâ€resolved wholeâ€heart MRI for imageâ€guided cardiovascular interventions. Magnetic Resonance in Medicine, 2012, 68, 205-213.	1.9	11
160	Improvement of Right Ventricular Hemodynamics with Left Ventricular Endocardial Pacing during Cardiac Resynchronization Therapy. PACE - Pacing and Clinical Electrophysiology, 2016, 39, 531-541.	0.5	11
161	A partition of unity approach to fluid mechanics and fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering, 2020, 362, 112842.	3.4	11
162	Magnetic resonance imaging comes of age. Cardiology in the Young, 1999, 9, 529-538.	0.4	10

#	Article	IF	CITATIONS
163	ICER reverses tumorigenesis of rat prostate tumor cells without affecting cell growth. Prostate, 2002, 53, 225-231.	1.2	10
164	Thermal Sensitization Using Induced Oxidative Stress Decreases Tumor Growth in an In Vivo Model of Hyperthermic Intraperitoneal Perfusion. Annals of Surgical Oncology, 2010, 17, 304-311.	0.7	10
165	New respiratory gating technique for whole heart cine imaging: Integration of a navigator slice in steady state free precession sequences. Journal of Magnetic Resonance Imaging, 2011, 34, 211-219.	1.9	10
166	Exploring kinetic energy as a new marker of cardiac function in the single ventricle circulation. Journal of Applied Physiology, 2018, 125, 889-900.	1.2	10
167	Improved co-registration of ex-vivo and in-vivo cardiovascular magnetic resonance images using heart-specific flexible 3D printed acrylic scaffold combined with non-rigid registration. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 62.	1.6	10
168	Economic impact of introducing TYRX amongst patients with heart failure and reduced ejection fraction undergoing implanted cardiac device procedures: a retrospective model based cost analysis. Journal of Medical Economics, 2019, 22, 464-470.	1.0	10
169	The impact of prenatal counselling on mothers of surviving children with hypoplastic left heart syndrome: A qualitative interview study. Health Expectations, 2020, 23, 1224-1230.	1.1	10
170	Synergy in the heart: RV systolic function plays a key role in optimizing LV performance during exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H642-H650.	1.5	10
171	Simultaneous 13N-Ammonia and gadolinium first-pass myocardial perfusion with quantitative hybrid PET-MR imaging: a phantom and clinical feasibility study. European Journal of Hybrid Imaging, 2019, 3, 15.	0.6	10
172	Myocardial perfusion distribution and coronary arterial pressure and flow signals: clinical relevance in relation to multiscale modeling, a review. Medical and Biological Engineering and Computing, 2013, 51, 1271-1286.	1.6	9
173	In vivo myofibre architecture in the systemic right ventricle. European Heart Journal, 2013, 34, 3640-3640.	1.0	9
174	Threeâ€dimensional late gadoliniumâ€enhanced mr imaging of the left atrium: A comparison of spiral versus Cartesian <i>k</i> â€space trajectories. Journal of Magnetic Resonance Imaging, 2014, 39, 211-216.	1.9	9
175	Effects of Epicardial and Endocardial Cardiac Resynchronization Therapy on Coronary Flow: Insights From Wave Intensity Analysis. Journal of the American Heart Association, 2015, 4, .	1.6	9
176	Evaluation of a real-time magnetic resonance imaging-guided electrophysiology system for structural and electrophysiological ventricular tachycardia substrate assessment. Europace, 2019, 21, 1432-1441.	0.7	9
177	Cost-Effectiveness of Immediate Magnetic Resonance Imaging In the Management of Patients With Suspected Scaphoid Fracture: Results From a Randomized Clinical Trial. Value in Health, 2020, 23, 1444-1452.	0.1	9
178	Shear wave cardiovascular MR elastography using intrinsic cardiac motion for transducer-free non-invasive evaluation of myocardial shear wave velocity. Scientific Reports, 2021, 11, 1403.	1.6	9
179	Determining anatomical and electrophysiological detail requirements for computational ventricular models of porcine myocardial infarction. Computers in Biology and Medicine, 2022, 141, 105061.	3.9	9
180	Trajectories of mental health among UK university staff and postgraduate students during the pandemic. Occupational and Environmental Medicine, 2022, 79, 514-520.	1.3	9

#	Article	IF	CITATIONS
181	Comparison of the cardiovascular effects of isoflurane and sevoflurane as measured by magnetic resonance imaging in children with congenital heart disease. Journal of Clinical Anesthesia, 2008, 20, 40-44.	0.7	8
182	Contrastâ€enhanced specific absorption rateâ€efficient 3D cardiac cine with respiratoryâ€ŧriggered radiofrequency gating. Journal of Magnetic Resonance Imaging, 2013, 37, 986-992.	1.9	8
183	B-Line Detection and Localization in Lung Ultrasound Videos Using Spatiotemporal Attention. Applied Sciences (Switzerland), 2021, 11, 11697.	1.3	8
184	A segmental approach to criss-cross heart by cardiac MRI. International Journal of Cardiology, 2007, 118, e103-e105.	0.8	7
185	Accelerated 3D catheter visualization from triplanar MR projection images. Magnetic Resonance in Medicine, 2010, 64, 167-176.	1.9	7
186	New developments in the delivery of cardiac resynchronization therapy: targeted lead placement, multi-site and endocardial pacing. Expert Review of Medical Devices, 2014, 11, 295-304.	1.4	7
187	Analysis of lead placement optimization metrics in cardiac resynchronization therapy with computational modelling. Europace, 2016, 18, iv113-iv120.	0.7	7
188	ECG imaging of ventricular tachycardia: evaluation against simultaneous non-contact mapping and CMR-derived grey zone. Medical and Biological Engineering and Computing, 2017, 55, 979-990.	1.6	7
189	Fast myocardial T ₁ mapping using shortened inversion recovery based schemes. Journal of Magnetic Resonance Imaging, 2019, 50, 641-654.	1.9	7
190	Mind the gap: Quantification of incomplete ablation patterns after pulmonary vein isolation using minimum path search. Medical Image Analysis, 2019, 51, 1-12.	7.0	7
191	Complex Interaction Between Low-Frequency APD Oscillations and Beat-to-Beat APD Variability in Humans Is Governed by the Sympathetic Nervous System. Frontiers in Physiology, 2019, 10, 1582.	1.3	7
192	Deep Learning for Classification and Selection of Cine CMR Images to Achieve Fully Automated Quality-Controlled CMR Analysis From Scanner to Report. Frontiers in Cardiovascular Medicine, 2021, 8, 742640.	1.1	7
193	First-Phase Ejection Fraction Predicts Response to Cardiac Resynchronization Therapy and Adverse Outcomes. JACC: Cardiovascular Imaging, 2021, 14, 2275-2285.	2.3	7
194	Analysis of Aortopulmonary Window Using Cardiac Magnetic Resonance Imaging. Circulation, 2012, 126, e228-9.	1.6	6
195	A randomized prospective mechanistic cardiac magnetic resonance study correlating catheter stability, late gadolinium enhancement and 3 year clinical outcomes in robotically assisted vs. standard catheter ablation. Europace, 2015, 17, 1241-1250.	0.7	6
196	Coupling of ventricular action potential duration and local strain patterns during reverse remodeling in responders and nonresponders to cardiac resynchronization therapy. Heart Rhythm, 2016, 13, 1898-1904.	0.3	6
197	FASt singleâ€breathhold 2D multislice myocardial T 1 mapping (FAST1) at 1.5T for full left ventricular coverage in three breathholds. Journal of Magnetic Resonance Imaging, 2020, 51, 492-504.	1.9	6
198	A fast navigator (fastNAV) for prospective respiratory motion correction in firstâ€pass myocardial perfusion imaging. Magnetic Resonance in Medicine, 2021, 85, 2661-2671.	1.9	6

#	Article	IF	CITATIONS
199	Quality-Aware Semi-supervised Learning for CMR Segmentation. Lecture Notes in Computer Science, 2021, 2020, 97-107.	1.0	6
200	Clinical applications of image fusion for electrophysiology procedures. , 2012, , .		5
201	Narrow QRS systolic heart failure: is there a target for cardiac resynchronization?. Expert Review of Cardiovascular Therapy, 2015, 13, 783-797.	0.6	5
202	Visualization of coronary arteries in paediatric patients using whole-heart coronary magnetic resonance angiography: comparison of image-navigation and the standard approach for respiratory motion compensation. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 13.	1.6	5
203	The value of ablation parameter indices for predicting mature atrial scar formation in humans: An in vivo assessment using cardiac magnetic resonance imaging. Journal of Cardiovascular Electrophysiology, 2019, 30, 67-77.	0.8	5
204	Simultaneous multislice steadyâ€state free precession myocardial perfusion with full left ventricular coverage and high resolution at 1.5 T. Magnetic Resonance in Medicine, 2022, 88, 663-675.	1.9	5
205	An automated near-real time computational method for induction and treatment of scar-related ventricular tachycardias. Medical Image Analysis, 2022, 80, 102483.	7.0	5
206	Novel imaging techniques for the diagnosis and treatment of congenital heart defects: MR-guided interventions and beyond. Future Cardiology, 2012, 8, 149-152.	0.5	4
207	Influence of acquired obesity on coronary vessel wall late gadolinium enhancement in discordant monozygote twins. European Radiology, 2017, 27, 4612-4618.	2.3	4
208	Comparison of the Diagnostic Accuracy of Plasma N-Terminal Pro-Brain Natriuretic Peptide in Patients <80 to those >80 Years of Age with Heart Failure. American Journal of Cardiology, 2018, 122, 2075-2079.	0.7	4
209	Contrast-free high-resolution 3D magnetization transfer imaging for simultaneous myocardial scar and cardiac vein visualization. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2020, 33, 627-640.	1.1	4
210	2D high resolution vs. 3D whole heart myocardial perfusion cardiovascular magnetic resonance. European Heart Journal Cardiovascular Imaging, 2022, 23, 811-819.	0.5	4
211	Management of chronic headache with referral from primary care to direct access to MRI compared with Neurology services: an observational prospective study in London. BMJ Open, 2020, 10, e036097.	0.8	4
212	The Role of AI in Characterizing the DCM Phenotype. Frontiers in Cardiovascular Medicine, 2021, 8, 787614.	1.1	4
213	2D phase contrast blood flow velocity measurements of the thoracic vasculature: comparison of the effect of gadofosveset trisodium and gadopentetate dimeglumine. International Journal of Cardiovascular Imaging, 2015, 31, 409-416.	0.7	3
214	High mean entropy calculated from cardiac MRI texture analysis is associated with antitachycardia pacing failure. PACE - Pacing and Clinical Electrophysiology, 2020, 43, 737-745.	0.5	3
215	Allâ€systolic firstâ€pass myocardial rest perfusion at a long saturation time using simultaneous multiâ€slice imaging and compressed sensing acceleration. Magnetic Resonance in Medicine, 2021, 86, 663-676.	1.9	3
216	Interventional cardiac MRI using an addâ€on parallel transmit MR system: In vivo experience in sheep. Magnetic Resonance in Medicine, 2021, 86, 3360-3372.	1.9	3

#	Article	IF	CITATIONS
217	Streaming in Transposition of the Great Arteries by Using Cardiac Magnetic Resonance Imaging. Circulation, 2014, 129, 1169-1170.	1.6	2
218	Unlocking the Non-invasive Assessment of Conduit and Reservoir Function in the Aorta. Journal of Cardiovascular Translational Research, 2022, 15, 1075-1085.	1.1	2
219	Structured analysis of the impact of fetal motion on phase-contrast MRI flow measurements with metric optimized gating. Scientific Reports, 2022, 12, 5395.	1.6	2
220	Hemiazygos vein "steal hypoxic-syndrome―after hemi-Fontan operation: comprehensive four-dimensional flow magnetic resonance visualisation. Cardiology in the Young, 2012, 22, 481-484.	0.4	1
221	Higher dose dobutamine stress MR imaging in repaired tetralogy of fallot: Observer variance of volumetric assessment compared with normal volunteers. Journal of Magnetic Resonance Imaging, 2013, 38, 1356-1361.	1.9	1
222	Magnetic resonance imaging planning in children with complex congenital heart disease – A new approach. JRSM Cardiovascular Disease, 2017, 6, 204800401770187.	0.4	1
223	A cost effectiveness study establishing the impact and accuracy of implementing the NICE guidelines lowering plasma NTproBNP threshold in patients with clinically suspected heart failure at our institution. International Journal of Cardiology, 2018, 257, 131-136.	0.8	1
224	Quantitative magnetization transfer imaging for nonâ€contrast enhanced detection of myocardial fibrosis. Magnetic Resonance in Medicine, 2021, 85, 2069-2083.	1.9	1
225	An 8 channel parallel transmit system with current sensor feedback for MRI-guided interventional applications. Physics in Medicine and Biology, 2021, 66, 21NT05.	1.6	1
226	021â€Perfusion cardiovascular magnetic resonance (CMR) – can david (resolution) take on goliath (coverage) again?. Heart, 2017, 103, A17.2-A18.	1.2	0
227	114â€Detecting ischaemia in flow limiting multi-vessel disease – is 3d perfusion cmr where the money lies?. Heart, 2017, 103, A86-A87.	1.2	0
228	20â€Combined high-resolution stress perfusion and scar assessment in patients with ischaemic heart failure. , 2018, , .		0
229	Quantification of balanced SSFP myocardial perfusion imaging at 1.5 T: Impact of the reference image. Magnetic Resonance in Medicine, 2022, 87, 702-717.	1.9	Ο
230	The effect of scar and pacing location on repolarization in a porcine myocardial infarction model. Heart Rhythm O2, 2022, 3, 186-195.	0.6	0
231	PO-658-07 THE EFFECT OF MULTIPOINTâ,,¢ PACING ON REVERSE REMODELLING AND THE INCIDENCE OF VENTRICULAR ARRHYTHMIAS (MPP VARR STUDY): EVALUATING BATTERY LONGEVITY AT 6 AND 24 MONTHS. Heart Rhythm, 2022, 19, S277.	0.3	0
232	PO-645-01 SUBTHRESHOLD DELAYED AFTERDEPOLARIZATIONS MEDIATED BY REDUCED TISSUE COUPLING PROVIDE AN IMPORTANT SUBSTRATE FOR UNIDIRECTIONAL BLOCK AND ARRHYTHMOGENESIS IN THE INFARCT BORDER ZONE. Heart Rhythm, 2022, 19, S223-S224.	0.3	0