Yoshiya Fukumoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7690555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ru3(CO)12-Catalyzed Cyclocarbonylation of 1,6-Enynes to Bicyclo[3.3.0]octenones. Journal of Organic Chemistry, 1997, 62, 3762-3765.	3.2	148
2	[Ir4(CO)12]-Catalyzed Coupling Reaction of Imidazoles with Aldehydes in the Presence of a Hydrosilane to Give 2-Substituted Imidazoles. Angewandte Chemie - International Edition, 2002, 41, 2779-2781.	13.8	97
3	Anti-Markovnikov Addition of Both Primary and Secondary Amines to Terminal Alkynes Catalyzed by the TpRh(C ₂ H ₄) ₂ /PPh ₃ System. Journal of the American Chemical Society, 2007, 129, 13792-13793.	13.7	93
4	Catalytic Carbonylation Reactions of Benzyne Derivatives. Journal of the American Chemical Society, 2001, 123, 12686-12687.	13.7	72
5	Ruthenium-catalyzed reaction of 1,6-diynes with hydrosilanes and carbon monoxide: a third way of incorporating CO. Journal of the American Chemical Society, 1993, 115, 11614-11615.	13.7	62
6	Reaction of Terminal Alkynes with Hydrazines To Give Nitriles, Catalyzed by TpRuCl(PPh3)2:Â Novel Catalytic Transformation Involving a Vinylidene Ruthenium Intermediate. Organometallics, 2002, 21, 3845-3847.	2.3	53
7	Rhenium-Catalyzed Regio- and Stereoselective Addition of Imines to Terminal Alkynes Leading to <i>N</i> -Alkylideneallylamines. Journal of the American Chemical Society, 2012, 134, 8762-8765.	13.7	48
8	Rutheniumâ€Catalyzed Carbonylation of <i>ortho</i> CH Bonds in Arylacetamides: CH Bond Activation Utilizing a Bidentateâ€Chelation System. ChemCatChem, 2012, 4, 1733-1736.	3.7	41
9	Switch in Stereoselectivity Caused by the Isocyanide Structure in the Rhodium-Catalyzed Silylimination of Alkynes. Journal of the American Chemical Society, 2011, 133, 10014-10017.	13.7	35
10	An unusual endo-selective C-H hydroarylationof norbornene by the Rh(I)-catalyzed reactionof benzamides. Nature Communications, 2017, 8, 1448.	12.8	35
11	A New Platinum Complex Catalyzed Reaction Involving Nucleophilic Substitution at the Central Carbon Atom of the π-Allyl Ligand. Journal of Organic Chemistry, 1999, 64, 7523-7527.	3.2	33
12	Iridium-Catalyzed Regioselective C(sp ³)–H Silylation of 4-Alkylpyridines at the Benzylic Position with Hydrosilanes Leading to 4-(1-Silylalkyl)pyridines. ACS Catalysis, 2017, 7, 3152-3156.	11.2	33
13	Platinum and Palladium Complex-Catalyzed Regioselective Nucleophilic Substitutions with Two Different Nucleophiles at the Central and Terminal Carbon Atoms of the π-Allyl Ligand. Organometallics, 2000, 19, 979-983.	2.3	31
14	Rhodium-Catalyzed Reaction of Terminal Alkynes with Allylamine Leading to (E)-3-AlkylideneN-Heterocycles. Organic Letters, 2006, 8, 4641-4643.	4.6	26
15	Catalytic Hydroamination of C-C Multiple Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 735-750.	0.1	24
16	lr ₄ (CO) ₁₂ -Catalyzed Benzylic C(sp ³)–H Silylation of 2-Alkylpyridines with Hydrosilanes Leading to 2-(1-Silylalkyl)pyridines. Journal of Organic Chemistry, 2017, 82, 13649-13655.	3.2	21
17	Synthesis of (<i>E</i>)â€3â€Alkylideneâ€1â€pyrrolines by the Rhodium―Catalyzed Cyclization of Terminal Alkynes with Homopropargylic Amines. Advanced Synthesis and Catalysis, 2009, 351, 2315-2318.	4.3	13
18	Chelation-assisted carbonylation reactions catalyzed by Rh and Ru complexes. Pure and Applied Chemistry, 2010, 82, 1443-1451.	1.9	13

Уозніча Гикимото

#	Article	IF	CITATIONS
19	A Cationic Iridium-catalyzed C(sp ³)–H Silylation of 2-Alkyl-1,3-azoles at the α-Position in the 2-Alkyl Group Leading to 2-(1-Silylalkyl)-1,3-azoles. Chemistry Letters, 2018, 47, 385-388.	1.3	11
20	Rhodiumâ€Catalyzed Antiâ€Markovnikov Hydrohydrazination of Terminal Alkynes with <i>N</i> â€Alkyl―and <i>N</i> , <i>N</i> â€Dialkylhydrazines. Asian Journal of Organic Chemistry, 2013, 2, 1036-1039.	2.7	10
21	Skeletal Reorganization of Enynes Catalyzed by a Ru(II)–Ru(III) Mixed-valence Complex under an Atmosphere of O2 or CO. Chemistry Letters, 2013, 42, 1565-1567.	1.3	9
22	Synthesis of α-Silylmethyl-α,β-Unsaturated Imines by the Rhodium-Catalyzed Silylimination of Primary-Alkyl-Substituted Terminal Alkynes. Journal of Organic Chemistry, 2014, 79, 8221-8227.	3.2	8
23	Conversion of 3,3,3-Trisubstituted Prop-1-ynes with <i>tert</i> Butylhydrazine into 3,3,3-Trisubstituted Propionitriles Catalyzed by TpRh(C ₂ H ₄) ₂ /P(2-furyl) ₃ . Journal of Organic Chemistry, 2016, 81, 3161-3167.	3.2	8
24	Ru ₃ (CO) ₁₂ -Catalyzed Reaction of 1,6-Diynes, Carbon Monoxide, and Water via the Reductive Coupling of Carbon Monoxide. Organic Letters, 2020, 22, 8747-8751.	4.6	7
25	Rhenium(I)-catalyzed reaction of terminal alkynes with imines leading to allylamine derivatives. Pure and Applied Chemistry, 2014, 86, 283-289.	1.9	5
26	A New Class of Redox Isomerization of N-Alkylpropargylamines into N-Alkylideneallylamines Catalyzed by a ReBr(CO)5/Amine N-oxide System. Organic Letters, 2019, 21, 1760-1765.	4.6	4
27	Iridium-Catalyzed Direct Amidation of Imidazoles at the C-2 Position with Isocyanates in the Presence of Hydrosilanes Leading to Imidazole-2-Carboxamides. Synthesis, 2021, 53, 3011-3018.	2.3	4
28	Direct and Regioselective Introduction of Acetals into Imidazoles at the 2â€Position by an Iridiumâ€Catalyzed Reaction with Formates in the Presence of Hydrosilanes. European Journal of Organic Chemistry, 2017, 2017, 1662-1665.	2.4	2
29	Co2(CO)8-Catalyzed Reactions of Acetals or Lactones with Hydrosilanes and Carbon Monoxide. A New Access to the Preparation of 1,2-Diol Derivatives through Siloxymethylation. Bulletin of the Chemical Society of Japan, 2021, 94, 81-90.	3.2	1
30	Rhodium-catalyzed Reaction of Alkynes with Hydrosilanes and <i>n</i> -Octyl Isocyanide: A Silylimination/1,4-Hydrosilylation Sequence Leading to β-Silylmethyl- <i>N</i> -silylenamines. Chemistry Letters, 2020, 49, 357-360.	1.3	0