
Parisa Hosseini Tehrani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/769048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boundary Element Analysis of Coupled Thermoelasticity with Relaxation Times in Finite Domain. AIAA Journal, 2000, 38, 534-541.	1.5	54
2	BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity. Engineering Analysis With Boundary Elements, 2000, 24, 249-257.	2.0	51
3	Boundary element analysis of stress intensity factor KI in some two-dimensional dynamic thermoelastic problems. Engineering Analysis With Boundary Elements, 2005, 29, 232-240.	2.0	38
4	Two materials S-frame representation for improving crashworthiness and lightening. Thin-Walled Structures, 2006, 44, 407-414.	2.7	32
5	Study on characteristics of a crashworthy high-speed train nose. International Journal of Crashworthiness, 2010, 15, 161-173.	1.1	31
6	Boundary element analysis of finite domains under thermal and mechanical shock with the Lord-Shulman theory. Journal of Strain Analysis for Engineering Design, 2003, 38, 53-64.	1.0	28
7	Dynamic Crack Analysis Under Coupled Thermoelastic Assumption. Journal of Applied Mechanics, Transactions ASME, 2001, 68, 584-588.	1.1	26
8	Collapse study of thin-walled polygonal section columns subjected to oblique loads. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2007, 221, 801-810.	1.1	21
9	Study on the collapse of tapered tubes subjected to oblique loads. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222, 2025-2039.	1.1	21
10	Boundary Element Formulation for Thermal Stresses During Pulsed Laser Heating. Journal of Applied Mechanics, Transactions ASME, 2001, 68, 480-489.	1.1	20
11	Study on crashworthiness of wagon's frame under frontal impact. International Journal of Crashworthiness, 2011, 16, 25-39.	1.1	18
12	Dynamic crack analysis under thermal shock considering Lord–Shulman theory. International Journal of Thermal Sciences, 2004, 43, 1003-1010.	2.6	17
13	Analysis of Thermoelastic Crack Problems Using Green–Lindsay Theory. Journal of Thermal Stresses, 2006, 29, 317-330.	1.1	16
14	Two-dimensional time-harmonic dynamic coupled thermoelasticity analysis by boundary element method formulation. Engineering Analysis With Boundary Elements, 1998, 22, 245-250.	2.0	15
15	Fatigue Analysis of Railway Wheels Under Combined Thermal and Mechanical Loads. Journal of Thermal Stresses, 2014, 37, 34-50.	1.1	15
16	Generalized thermoelastic analysis of layer interface excited by pulsed laser heating. Engineering Analysis With Boundary Elements, 2003, 27, 863-869.	2.0	13
17	Thermal load effects on fatigue life of a cracked railway wheel. Latin American Journal of Solids and Structures, 2015, 12, 1144-1157.	0.6	12
18	BOUNDARY ELEMENT ANALYSIS OF GREEN AND LINDSAY THEORY UNDER THERMAL AND MECHANICAL SHOCK IN A FINITE DOMAIN. Journal of Thermal Stresses, 2000, 23, 773-792.	1.1	11

#	Article	IF	CITATIONS
19	Effects of ribs on S-frame crashworthiness. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220, 1679-1689.	1.1	11
20	3D transient elasto-plastic finite element analysis of a flatted railway wheel in rolling contact. Mechanics Based Design of Structures and Machines, 2018, 46, 751-766.	3.4	11
21	Experimental and numerical investigation of the characteristics of flash-butt joints used in continuously welded rails. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 65-79.	1.3	10
22	A new methodology for the estimation of wheel–rail contact forces at a high-frequency range. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 2353-2370.	1.3	9
23	IMPROVING CRASHWORTHINESS IN RAILCAR AGAINST ROLLOVER. Transactions of the Canadian Society for Mechanical Engineering, 2012, 36, 383-397.	0.3	8
24	Fracture toughness estimation of ballast stone used in Iranian railway. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9, 892-899.	3.7	8
25	The energy balance to nonlinear oscillations via Jacobi collocation method. AEJ - Alexandria Engineering Journal, 2015, 54, 99-103.	3.4	7
26	Optimal strain gauge placement in instrumented wheelset for measuring wheel-rail contact forces. International Journal of Precision Engineering and Manufacturing, 2017, 18, 1519-1527.	1.1	7
27	Fatigue crack initiation life prediction of railroad. Journal of Physics: Conference Series, 2009, 181, 012038.	0.3	6
28	Rational variational approaches to strong nonlinear oscillations. International Journal of Applied and Computational Mathematics, 2017, 3, 757-771.	0.9	6
29	Investigation of residual stress and optimization of welding process parameters to decrease tensile residual stress in the flash butt welded UIC60 rail. Mechanics Based Design of Structures and Machines, 2020, , 1-15.	3.4	5
30	Prediction of Residual Stress Distribution in Flash Butt Welded Rails using Electro-Thermo-Mechanical Simulation. International Journal of Vehicle Structures and Systems, 2014, 5, .	0.1	4
31	Modeling temperature evolution of wheel flat during formation. International Journal of Thermal Sciences, 2019, 140, 114-126.	2.6	4
32	Increasing fatigue crack initiation life in butt-welded UIC60 rail by optimization of welding process parameters. International Journal of Fatigue, 2021, 151, 106367.	2.8	4
33	IMPORTANCE OF INERTIA TERM IN DYNAMIC CRACK PROBLEMS CONSIDERING LORD–SHULMAN THEORY OF THERMOELASTICITY. Journal of Thermal Stresses, 2005, 28, 267-283.	1.1	3
34	Effect of surface elasticity on scattering of elastic P-waves from a nanofiber including an inhomogeneous interphase. Composite Interfaces, 2015, 22, 95-125.	1.3	3
35	Frequency analysis of nonlinear oscillations via the global error minimization. Nonlinear Engineering, 2016, .	1.4	3
36	Interface/interphase effects on scattering of elastic P- and SV-waves from a circular nanoinclusion embedded in a solid viscoelastic matrix. European Journal of Mechanics, A/Solids, 2019, 73, 67-89.	2.1	3

Parisa Hosseini Tehrani

#	Article	IF	CITATIONS
37	Study on Crashworthiness Characteristics of Several Concentric Thin Wall Tubes. , 2010, , .		2
38	Studying energy absorption in tapered thick walled tubes. Latin American Journal of Solids and Structures, 2015, 12, 173-204.	0.6	2
39	Scattering of elastic P- and SV-waves by a circular coated nanofiber based on Gurtin–Murdoch model of surface elasticity: Scattering cross section results. Mechanics of Advanced Materials and Structures, 2017, 24, 469-481.	1.5	2
40	Analytical Formulation for Temperature Evolution in Flat Wheel-Rail Sliding Surfaces. Mathematical Problems in Engineering, 2018, 2018, 1-7.	0.6	2
41	A New Combined Model for considering the Plasticity Effects in Contacting Asperities. Mathematical Problems in Engineering, 2020, 2020, 1-12.	0.6	2
42	Numerical calculation of crack driving force using the configurational force concept for elastic–plastic rail cracks. Strength, Fracture and Complexity, 2020, 13, 45-64.	0.2	2
43	Effects of new materials on the crashworthiness of S-rails. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2008, 222, 37-44.	0.7	1
44	Stress and temperature distribution at layer interface excited by pulsed laser heating. Journal of Strain Analysis for Engineering Design, 2005, 40, 395-402.	1.0	0
45	Study on high-speed train nose under frontal and side impact. Pollack Periodica, 2010, 5, 99-121.	0.2	0
46	Dynamic Stress Concentrations Due to Scattering of Elastic SV Waves from a Coated Nanoinclusion with Considerations in the Interfacial Region. Journal of Mechanics, 2017, 33, 279-288.	0.7	0