Ting-Wu Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7690474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication and characterization of a pro-angiogenic hydrogel derived from the human placenta. Biomaterials Science, 2022, 10, 2062-2075.	2.6	8
2	Constructing a highly bioactive tendon-regenerative scaffold by surface modification of tissue-specific stem cell derived extracellular matrix. International Journal of Energy Production and Management, 2022, 9, rbac020.	1.9	1
3	Biomechanically and biochemically functional scaffold for recruitment of endogenous stem cells to promote tendon regeneration. Npj Regenerative Medicine, 2022, 7, 26.	2.5	9
4	Hierarchically Demineralized Cortical Bone Combined With Stem Cell–Derived Extracellular Matrix for Regeneration of the Tendon-Bone Interface. American Journal of Sports Medicine, 2021, 49, 1323-1332.	1.9	16
5	Enhancement of Migration and Tenogenic Differentiation of Macaca Mulatta Tendon-Derived Stem Cells by Decellularized Tendon Hydrogel. Frontiers in Cell and Developmental Biology, 2021, 9, 651583.	1.8	14
6	Influence of the integrity of tendinous membrane and fascicle on biomechanical characteristics of tendon-derived scaffolds. Biomedical Materials (Bristol), 2021, 16, 015029.	1.7	4
7	Segmentally Demineralized Cortical Bone With Stem Cell-Derived Matrix Promotes Proliferation, Migration and Differentiation of Stem Cells in vitro. Frontiers in Cell and Developmental Biology, 2021, 9, 776884.	1.8	1
8	A programmable, fast-fixing, osteo-regenerative, biomechanically robust bone screw. Acta Biomaterialia, 2020, 103, 293-305.	4.1	21
9	Stem Cell Extracellular Matrix-Modified Decellularized Tendon Slices Facilitate the Migration of Bone Marrow Mesenchymal Stem Cells. ACS Biomaterials Science and Engineering, 2019, 5, 4485-4495.	2.6	14
10	Mechanically Robust Shape Memory Polyurethane Nanocomposites for Minimally Invasive Bone Repair. ACS Applied Bio Materials, 2019, 2, 1056-1065.	2.3	44
11	Enhancement of tenogenic differentiation of rat tendonâ€derived stem cells by biglycan. Journal of Cellular Physiology, 2019, 234, 15898-15910.	2.0	13
12	The cytoptrotection of small intestinal submucosaâ€derived gel in HLâ€1 cells during hypoxia/reoxygenationâ€induced injury. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1346-1361.	1.3	3
13	A "trampoline―nanocomposite: Tuning the interlayer spacing in graphene oxide/polyurethane to achieve coalesced mechanical and memory properties. Composites Science and Technology, 2019, 180, 14-22.	3.8	14
14	Effects of hydrogen peroxide on biological characteristics and osteoinductivity of decellularized and demineralized bone matrices. Journal of Biomedical Materials Research - Part A, 2019, 107, 1476-1490.	2.1	9
15	Combined use of Kirschner wires and hinged external fixator for capitellar and trochlear fractures: a minimum 24â€month followâ€up. ANZ Journal of Surgery, 2019, 89, 196-200.	0.3	5
16	Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 936-945.	1.1	62
17	The impact of associated injuries and fracture classifications on the treatment of capitellum and trochlea fractures: A systematic review and meta-analysis. International Journal of Surgery, 2018, 54, 37-47.	1.1	9
18	An engineered tendon/ligament bioscaffold derived from decellularized and demineralized cortical bone matrix. Journal of Biomedical Materials Research - Part A, 2018, 106, 468-478.	2.1	16

Ting-Wu Qin

#	Article	IF	CITATIONS
19	In Vitro and In Vivo Performance of Tissue-Engineered Tendons for Anterior Cruciate Ligament Reconstruction: Letter to the Editor. American Journal of Sports Medicine, 2018, 46, NP60-NP61.	1.9	0
20	Evaluation of Decellularized Bovine Tendon Sheets for Achilles Tendon Defect Reconstruction in a Rabbit Model. American Journal of Sports Medicine, 2018, 46, 2687-2699.	1.9	18
21	Bridging Repair of Large Rotator Cuff Tears Using a Multilayer Decellularized Tendon Slices Graft in a Rabbit Model. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2018, 34, 2569-2578.	1.3	30
22	Fabrication and characterization of a decellularized bovine tendon sheet for tendon reconstruction. Journal of Biomedical Materials Research - Part A, 2017, 105, 2299-2311.	2.1	26
23	High performance shape memory foams with isocyanate-modified hydroxyapatite nanoparticles for minimally invasive bone regeneration. Ceramics International, 2017, 43, 4794-4802.	2.3	32
24	Topographical Control of Preosteoblast Culture by Shape Memory Foams. Advanced Engineering Materials, 2017, 19, 1600343.	1.6	10
25	Design of a Smart Nerve Conduit Based on a Shapeâ€Memory Polymer. Advanced Materials Technologies, 2016, 1, 1600015.	3.0	31
26	Nerve Regeneration: Design of a Smart Nerve Conduit Based on a Shape-Memory Polymer (Adv. Mater.) Tj ETQqC	0.0 ₁ gBT	/Oyerlock 10
27	bFGF- and CaPP-Loaded Fibrin Clots Enhance the Bioactivity of the Tendon-Bone Interface to Augment Healing. American Journal of Sports Medicine, 2016, 44, 1972-1982.	1.9	22
28	Decellularization of porcine skeletal muscle extracellular matrix for the formulation of a matrix hydrogel: a preliminary study. Journal of Cellular and Molecular Medicine, 2016, 20, 740-749.	1.6	58
29	Effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs. Applied Surface Science, 2016, 388, 223-227.	3.1	13
30	Preparation and characterization of pro-angiogenic gel derived from small intestinal submucosa. Acta Biomaterialia, 2016, 29, 135-148.	4.1	73

30	Preparation and characterization of pro-angiogenic gel derived from small intestinal submucosa. Acta Biomaterialia, 2016, 29, 135-148.	4.1	73
31	Effect of mechanical stimulation on bone marrow stromal cell–seeded tendon slice constructs: A potential engineered tendon patch for rotator cuff repair. Biomaterials, 2015, 51, 43-50.	5.7	72
32	The utilization of decellularized tendon slices to provide an inductive microenvironment for the proliferation and tenogenic differentiation of stem cells. Biomaterials, 2015, 52, 539-550.	5.7	82
33	Rotator cuff repair using a decellularized tendon slices graft: an in vivo study in a rabbit model. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, 1524-1535.	2.3	35
34	Tissue-engineered ribs for chest wall reconstruction: a case with 12-year follow-up. Regenerative Medicine, 2014, 9, 431-436.	0.8	11
35	Preparation and characterization of decellularized tendon slices for tendon tissue engineering. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1448-1456.	2.1	89
36	Mechanical characteristics of native tendon slices for tissue engineering scaffold. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 752-758.	1.6	27

3

Ting-Wu Qin

#	Article	IF	CITATIONS
37	A multi-step method for preparation of porcine small intestinal submucosa (SIS). Biomaterials, 2011, 32, 706-713.	5.7	121
38	Effects of 20% demineralization on surface physical properties of compact bone scaffold and bone remodeling response at interface after orthotopic implantation. Bone, 2009, 45, 301-308.	1.4	7
39	Effects of micropatterned surfaces coated with type I collagen on the proliferation and morphology of tenocytes. Applied Surface Science, 2008, 255, 368-370.	3.1	6
40	Surface configuration properties of partially demineralized bio-derived compact bone scaffolds. Applied Surface Science, 2008, 255, 449-451.	3.1	2
41	The performance of a bone-derived scaffold material in the repair of critical bone defects in a rhesus monkey model. Biomaterials, 2007, 28, 3314-3324.	5.7	42
42	Adhesion strength of human tenocytes to extracellular matrix component-modified poly(dl-lactide-co-glycolide) substrates. Biomaterials, 2005, 26, 6635-6642.	5.7	48
43	Biomechanical Evaluation of Augmentation of Osteoporotic Cancellous Bone with an Injectable Nano-hydroxyapatite/Polyamide 66 Composite Cement. Journal of Hard Tissue Biology, 2005, 14, 282-283.	0.2	1