
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7690155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developing reactors for electrifying bio-methanation: a perspective from bio-electrochemistry. Sustainable Energy and Fuels, 2022, 6, 1249-1263.	4.9	3
2	Effect of Feedstock Variability, Feedstock Blends, and Pretreatment Conditions on Sugar Yield and Production Costs. Frontiers in Energy Research, 2022, 9, .	2.3	4
3	An economic analysis of the role of materials, system engineering, and performance in electrochemical carbon dioxide conversion to formate. Journal of Cleaner Production, 2022, 351, 131564.	9.3	7
4	Techno-economic Analysis and Life-Cycle Analysis of Renewable Diesel Fuels Produced with Waste Feedstocks. ACS Sustainable Chemistry and Engineering, 2022, 10, 382-393.	6.7	28
5	Environmental, Economic, and Scalability Considerations of Selected Bio-Derived Blendstocks for Mixing-Controlled Compression Ignition Engines. ACS Sustainable Chemistry and Engineering, 2022, 10, 6699-6712.	6.7	13
6	The economic outlook for converting CO ₂ and electrons to molecules. Energy and Environmental Science, 2021, 14, 3664-3678.	30.8	60
7	Biorefinery ethanol upgrading: Opportunities and challenges. Joule, 2021, 5, 524-526.	24.0	2
8	Toward net-zero sustainable aviation fuel with wet waste–derived volatile fatty acids. Proceedings of the United States of America, 2021, 118, .	7.1	63
9	Biofuel Options for Marine Applications: Technoeconomic and Life-Cycle Analyses. Environmental Science & Technology, 2021, 55, 7561-7570.	10.0	38
10	Life cycle analysis of renewable natural gas and lactic acid production from waste feedstocks. Journal of Cleaner Production, 2021, 311, 127653.	9.3	22
11	Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule, 2021, 5, 2479-2503.	24.0	160
12	A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: Opportunities and barriers to commercialization. Applied Energy, 2021, 303, 117637.	10.1	48
13	Using waste <scp>CO₂</scp> from corn ethanol biorefineries for additional ethanol production: life ycle analysis. Biofuels, Bioproducts and Biorefining, 2021, 15, 468-480.	3.7	13
14	Towards cost-competitive middle distillate fuels from ethanol within a market-flexible biorefinery concept. Green Chemistry, 2021, 23, 9534-9548.	9.0	12
15	(Invited) Techno-Economic Analysis of Utilizing Electricity to Produce Intermediates from CO2. ECS Meeting Abstracts, 2021, MA2021-02, 1362-1362.	0.0	0
16	The Need for and Path to Harmonized Life Cycle Assessment and Techno conomic Assessment for Carbon Dioxide Capture and Utilization. Energy Technology, 2020, 8, 1901034.	3.8	29
17	Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO ₂ utilization. Energy and Environmental Science, 2020, 13, 472-494.	30.8	290
18	Technoeconomic and life-cycle analysis of single-step catalytic conversion of wet ethanol into fungible fuel blendstocks. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12576-12583.	7.1	27

#	Article	IF	CITATIONS
19	Using waste CO2 to increase ethanol production from corn ethanol biorefineries: Techno-economic analysis. Applied Energy, 2020, 280, 115964.	10.1	24
20	Economic Perspectives of Biogas Production via Anaerobic Digestion. Bioengineering, 2020, 7, 74.	3.5	77
21	Value Proposition of Untapped Wet Wastes: Carboxylic Acid Production through Anaerobic Digestion. IScience, 2020, 23, 101221.	4.1	51
22	Biological valorization of natural gas for the production of lactic acid: Techno-economic analysis and life cycle assessment. Biochemical Engineering Journal, 2020, 158, 107500.	3.6	25
23	A hybrid pathway to biojet fuel <i>via</i> 2,3-butanediol. Sustainable Energy and Fuels, 2020, 4, 3904-3914.	4.9	22
24	Understanding the role of Fischer–Tropsch reaction kinetics in technoâ€economic analysis for co onversion of natural gas and biomass to liquid transportation fuels. Biofuels, Bioproducts and Biorefining, 2019, 13, 1306-1320.	3.7	11
25	Kinetics and Rheological Behavior of Higher Solid (Solids >20%) Enzymatic Hydrolysis Reactions Using Dilute Acid Pretreated, Deacetylation and Disk Refined, and Deacetylation and Mechanical Refined (DMR) Corn Stover Slurries. ACS Sustainable Chemistry and Engineering, 2019, 7, 1633-1641.	6.7	14
26	Technoâ€economic analysis of jetâ€fuel production from biorefinery waste lignin. Biofuels, Bioproducts and Biorefining, 2019, 13, 486-501.	3.7	67
27	What Should We Make with CO2 and How Can We Make It?. Joule, 2018, 2, 825-832.	24.0	975
28	Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels, Bioproducts and Biorefining, 2018, 12, 125-138.	3.7	111
29	Environmental, Economic, and Scalability Considerations and Trends of Selected Fuel Economy-Enhancing Biomass-Derived Blendstocks. ACS Sustainable Chemistry and Engineering, 2018, 6, 561-569.	6.7	28
30	Economic and environmental potentials for natural gas to enhance biomass-to-liquid fuels technologies. Green Chemistry, 2018, 20, 5358-5373.	9.0	26
31	Techno-Economic Analysis and Life-Cycle Analysis of Two Light-Duty Bioblendstocks: Isobutanol and Aromatic-Rich Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2018, 6, 8790-8800.	6.7	18
32	Recycling of Dilute Deacetylation Black Liquor to Enable Efficient Recovery and Reuse of Spent Chemicals and Biomass Pretreatment Waste. Frontiers in Energy Research, 2018, 6, .	2.3	15
33	Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways. Biotechnology for Biofuels, 2017, 10, 21.	6.2	38
34	Techno-economic analysis for upgrading the biomass-derived ethanol-to-jet blendstocks. Green Chemistry, 2017, 19, 1082-1101.	9.0	73
35	Technical Performance and Economic Evaluation of Evaporative and Membrane-Based Concentration for Biomass-Derived Sugars. Industrial & Engineering Chemistry Research, 2017, 56, 11584-11592.	3.7	3
36	Comparative technoâ€economic analysis and process design for indirect liquefaction pathways to distillateâ€range fuels via biomassâ€derived oxygenated intermediates upgrading. Biofuels, Bioproducts and Biorefining, 2017, 11, 41-66.	3.7	39

#	Article	IF	CITATIONS
37	Techno-economic and resource analysis of hydroprocessed renewable jet fuel. Biotechnology for Biofuels, 2017, 10, 261.	6.2	82
38	Long-term variability in sugarcane bagasse feedstock compositional methods: sources and magnitude of analytical variability. Biotechnology for Biofuels, 2016, 9, 223.	6.2	1
39	The Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2016, 4, 3196-3211.	6.7	121
40	Techno-economic analysis of a conceptual biofuel production process from bioethylene produced by photosynthetic recombinant cyanobacteria. Green Chemistry, 2016, 18, 6266-6281.	9.0	28
41	Improving Sugar Yields and Reducing Enzyme Loadings in the Deacetylation and Mechanical Refining (DMR) Process through Multistage Disk and Szego Refining and Corresponding Techno-Economic Analysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 324-333.	6.7	40
42	DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L ^{â'1}) during enzymatic hydrolysis and high ethanol concentrations (>10% v/v) during fermentation without hydrolysate purification or concentration. Energy and Environmental Science, 2016, 9, 1237-1245.	30.8	157
43	Bio-jet fuel conversion technologies. Renewable and Sustainable Energy Reviews, 2016, 53, 801-822.	16.4	354
44	Techno-economic analysis of the deacetylation and disk refining process: characterizing the effect of refining energy and enzyme usage on minimum sugar selling price and minimum ethanol selling price. Biotechnology for Biofuels, 2015, 8, 173.	6.2	32
45	Perspectives on Process Analysis for Advanced Biofuel Production. , 2015, , 33-60.		2
46	Intermediate species measurement during iso-butanol auto-ignition. Combustion and Flame, 2015, 162, 3541-3553.	5.2	32
47	Visualization of the Mode Shapes of Pressure Oscillation in a Cylindrical Cavity. Combustion Science and Technology, 2015, 187, 1610-1619.	2.3	15
48	Performance and techno-economic assessment of several solid–liquid separation technologies for processing dilute-acid pretreated corn stover. Bioresource Technology, 2014, 167, 291-296.	9.6	20
49	Comparative technoâ€economic analysis and reviews of nâ€butanol production from corn grain and corn stover. Biofuels, Bioproducts and Biorefining, 2014, 8, 342-361.	3.7	80
50	A highly efficient dilute alkali deacetylation and mechanical (disc) refining process for the conversion of renewable biomass to lower cost sugars. Biotechnology for Biofuels, 2014, 7, 98.	6.2	78
51	High temperature pre-digestion of corn stover biomass for improved product yields. Biotechnology for Biofuels, 2014, 7, 170.	6.2	11
52	Technoâ€economic analysis and lifeâ€cycle assessment of cellulosic isobutanol and comparison with cellulosic ethanol and nâ€butanol. Biofuels, Bioproducts and Biorefining, 2014, 8, 30-48.	3.7	185
53	Ethylene-forming enzyme and bioethylene production. Biotechnology for Biofuels, 2014, 7, 33.	6.2	90
54	Bioconversion of natural gas to liquid fuel: Opportunities and challenges. Biotechnology Advances, 2014, 32, 596-614.	11.7	255

#	Article	IF	CITATIONS
55	Comparison of different mechanical refining technologies on the enzymatic digestibility of low severity acid pretreated corn stover. Bioresource Technology, 2013, 147, 401-408.	9.6	70
56	Effect of corn stover compositional variability on minimum ethanol selling price (MESP). Bioresource Technology, 2013, 140, 426-430.	9.6	20
57	Improved ethanol yield and reduced Minimum Ethanol Selling Price (MESP) by modifying low severity for Biofuels, 2012, 5, 60.	6.2	60
58	Improved ethanol yield and reduced minimum ethanol selling price (MESP) by modifying low severity Biotechnology for Biofuels, 2012, 5, 69.	6.2	42
59	Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energy and Environmental Science, 2012, 5, 8998.	30.8	214
60	Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input–output analysis. AICHE Journal, 2012, 58, 1157-1180.	3.6	547
61	Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresource Technology, 2011, 102, 11105-11114.	9.6	274
62	Modeling of rotating drum bioreactor for anaerobic solid-state fermentation. Applied Energy, 2010, 87, 2839-2845.	10.1	55
63	A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering. Biomass and Bioenergy, 2010, 34, 1065-1078.	5.7	129
64	The economics of current and future biofuels. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 199-217.	2.1	123
65	Synthesis of Azeotropic Distillation Systems with Recycles. Industrial & Engineering Chemistry Research 2003 42 1783-1794	3.7	19