Yi Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7689957/publications.pdf

Version: 2024-02-01

		430874	345221
68	1,469	18	36
papers	citations	h-index	g-index
60	69	60	1265
68	68	68	1365
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The microstructural, mechanical and thermal properties of TiAlVN, TiAlSiN monolithic and TiAlVN/TiAlSiN multilayered coatings. Journal of Alloys and Compounds, 2022, 899, 163332.	5.5	15
2	Discovery of a bulk C36-type MgZn2 structure step by step transformed from the C14 prototype laves phase structure. Journal of Materials Science, 2022, 57, 2999-3009.	3.7	4
3	Growth modes of grain boundary precipitate in aluminum alloys under different lattice misfits. Journal of Materials Science, 2022, 57, 2744-2757.	3.7	9
4	Impact of oxygen content on the thermal stability of Ti-Al-O-N coatings based on computational and experimental studies. Acta Materialia, 2022, 227, 117706.	7.9	8
5	Atomic site occupancy of alloying elements and Laves phase stability in γ-γ′ Co-base superalloys. Journal of Alloys and Compounds, 2022, 906, 164261.	5 . 5	4
6	Self-accommodated defect structures modifying the growth of Laves phase. Journal of Materials Science and Technology, 2021, 62, 203-213.	10.7	14
7	Effect of diffusion barrier and interfacial strengthening on the interface behavior between high entropy alloy and diamond. Journal of Alloys and Compounds, 2021, 852, 157023.	5 . 5	15
8	Effect of alloying on stability of grain boundary in γ phase of the U–Mo and U–Nb systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 72, 102241.	1.6	7
9	Microstructure, mechanical and thermal properties of TiAlTaN/TiAlSiN multilayer. Vacuum, 2021, 187, 110138.	3 . 5	13
10	Atomic-scale study of compositional and structural evolution of early-stage grain boundary precipitation in Al–Cu alloys through phase-field crystal simulation. Journal of Materials Science, 2021, 56, 12700-12715.	3.7	12
11	Unusual Force Constants Guided Distortion-Triggered Loss of Long-Range Order in Phase Change Materials. Materials, 2021, 14, 3514.	2.9	4
12	Effect of B-doping on the mechanical properties, thermal stability and oxidation resistance of TiAlN coatings. International Journal of Refractory Metals and Hard Materials, 2021, 98, 105531.	3.8	20
13	A First-Principles Study of the Cu-Containing β″ Precipitates in Al-Mg-Si-Cu Alloy. Materials, 2021, 14, 7879.	2.9	2
14	First-principles investigation on stability and electronic structure of Sc-doped Î,′/Al interface in Alâ^'Cu alloys. Transactions of Nonferrous Metals Society of China, 2021, 31, 3342-3355.	4.2	14
15	Quantified contribution of $\hat{l}^2\hat{a}\in^3$ and $\hat{l}^2\hat{a}\in^2$ precipitates to the strengthening of an aged Al $\hat{a}\in^4$ Mg $\hat{a}\in^4$ Si alloy. Materials Science & Science & Structural Materials: Properties, Microstructure and Processing, 2020, 774, 138776.	5 . 6	84
16	Atomic scale investigation of the crystal structure and interfaces of the B′ precipitate in Al-Mg-Si alloys. Acta Materialia, 2020, 185, 193-203.	7.9	72
17	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si2.svg"><mml:msup><mml:mrow><mml:mi>β</mml:mi></mml:mrow><mml:mrow><mml:mtext>'needle-shape precipitate formation in Al-Mg-Si alloy: Phase field simulation and experimental verification, Computational Materials Science, 2020, 184, 109878.</mml:mtext></mml:mrow></mml:msup></mml:math>	ml:mtext>	<mml:mtext></mml:mtext>
18	Thermodynamic modeling and solidified microstructure in the Mo–Nb–Zr ternary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 66, 101630.	1.6	11

#	Article	IF	CITATIONS
19	Boosting charge transfer via molybdenum doping and electric-field effect in bismuth tungstate: Density function theory calculation and potential applications. Journal of Colloid and Interface Science, 2019, 534, 20-30.	9.4	36
20	Structural evolution of oxygen on the surface of TiAlN: Ab initio molecular dynamics simulations. Applied Surface Science, 2019, 470, 520-525.	6.1	20
21	Effect of electron beam irradiation in TEM on the microstructure and composition of nanoprecipitates in Al-Mg-Si alloys. Micron, 2019, 116, 116-123.	2.2	7
22	Three-dimensional phase field simulation for rafting of multiparticle precipitate in elastic inhomogeneous alloy under external stress. Journal of Mining and Metallurgy, Section B: Metallurgy, 2019, 55, 101-110.	0.8	1
23	Effect of stamping deformation on microstructure and properties evolution of an Al–Mg–Si–Cu alloy for automotive panels. Journal of Materials Science, 2017, 52, 5569-5581.	3.7	8
24	Phase field crystal simulation of the structure evolution between the hexagonal and square phases at elevated pressures. Journal of Mining and Metallurgy, Section B: Metallurgy, 2017, 53, 271-278.	0.8	6
25	Developing Cemented Carbides Through ICME. Minerals, Metals and Materials Series, 2017, , 155-167.	0.4	O
26	Interfacial effect on strengthening nanoscale metallic multilayers - a combined Hall-Petch relation and atomistic simulation study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 663, 29-37.	5.6	9
27	Mechanical properties of $\hat{l}^2\hat{a}\in \mathcal{S}$ precipitates containing Al and/or Cu in age hardening Al alloys. Journal of Materials Research, 2016, 31, 580-588.	2.6	6
28	Asymmetric mixing behavior and stability of the predicted phases in the W–Cu system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2016, 53, 116-121.	1.6	9
29	Ab initio molecular dynamics studies on effect of Zr on oxidation resistance of TiAlN coatings. Applied Surface Science, 2016, 378, 293-300.	6.1	19
30	First-principles prediction of structural, mechanical and magnetic properties in Ni2MnAl. Computational Materials Science, 2016, 123, 52-58.	3.0	12
31	The microstructure evolution of U1 and U2 nanowires constrained in Al matrix. Computational Materials Science, 2016, 117, 180-187.	3.0	4
32	Nano/micro mechanics study of nanoindentation on thin Al/Pd films. Journal of Materials Research, 2015, 30, 699-708.	2.6	7
33	Microstructure and composition of the grain/binder interface in WC–Ni3Al composites. International Journal of Refractory Metals and Hard Materials, 2014, 44, 88-93.	3.8	18
34	Strengthening mechanism of metallic nanoscale multilayer with negative enthalpy of mixing. Journal of Applied Physics, 2011, 110, .	2.5	13
35	Structure, elastic and thermodynamic properties of the Ni–P system from first-principles calculations. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 284-291.	1.6	25
36	Al–Pd interatomic potential and its application to nanoscale multilayer thin films. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2011, 530, 73-86.	5.6	13

#	Article	IF	CITATIONS
37	Structure and thermodynamics of the key precipitated phases in the Al–Mg–Si alloys from first-principles calculations. Journal of Materials Science, 2011, 46, 7839-7849.	3.7	26
38	Self-Diffusion Coefficient of fcc Mg: First-Principles Calculations and Semi-Empirical Predictions. Journal of Phase Equilibria and Diffusion, 2011, 32, 128-137.	1.4	13
39	Native defects in LiNH <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow></mml:mrow>mml:mrow></mml:msub></mml:mrow></mml:math> : A first-principles study. Physical Review B. 2011. 84	3.2	19
40	COMPARISON OF EQUATION OF STATE AND THE FOUR-PARAMETER (font) Li (font) EQUATION OF STATE IN ALLOY. Modern Physics Letters B, 2011, 25, 1557-1568.	1.9	1
41	Spatial and electronic structure of the Ni3P surface. Applied Surface Science, 2010, 256, 7692-7695.	6.1	11
42	The effect of Ti atom on hydrogenation of Al(111) surface: First-principles studies. International Journal of Hydrogen Energy, 2010, 35, 609-613.	7.1	18
43	Energetic, mechanical, and vibrational stability of metastable OsC phase. Journal of Applied Physics, 2010, 108, .	2.5	7
44	Elastic and thermodynamic properties of the Niâ€"B system studied by first-principles calculations and experimental measurements. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34, 245-251.	1.6	15
45	Structural and elastic properties of cubic and hexagonal TiN and AlN from first-principles calculations. Computational Materials Science, 2010, 48, 705-709.	3.0	126
46	Thermodynamic Assessment of the Cu-B System Supported by Key Experiment and First-Principles Calculations. Journal of Phase Equilibria and Diffusion, 2009, 30, 480-486.	1.4	7
47	Cage-like structure and charge hollow in the immiscible Cu–Ta system. Solid State Communications, 2009, 149, 1974-1977.	1.9	1
48	Thermodynamic investigation of the galvanizing systems, I: Refinement of the thermodynamic description for the Fe–Zn system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 433-440.	1.6	44
49	First-principles study of binary special quasirandom structures for the Al–Cu, Al–Si, Cu–Si, and Mg–Si systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 769-773.	1.6	17
50	Structural stability of high-pressure phase in the immiscible Cu–Nb system studied by lattice dynamics calculation. Journal of Alloys and Compounds, 2009, 468, 299-302.	5.5	1
51	Reassessment of the Ni–B system supported by key experiments and first-principles calculation. International Journal of Materials Research, 2009, 100, 59-67.	0.3	9
52	Interatomic potentials of the binary transition metal systems and some applications in materials physics. Physics Reports, 2008, 455, 1-134.	25.6	112
53	Atomic mobilities, diffusivities and simulation of diffusion growth in the Co–Si system. Acta Materialia, 2008, 56, 3940-3950.	7.9	69
54	Long-range empirical potential for the bcc structured transition metals. Physical Review B, 2007, 75, .	3.2	43

#	Article	IF	CITATIONS
55	Proposed power-functionN-body potential for the fcc structured metals Ag, Au, Cu, Ni, Pd, and Pt. Physical Review B, 2007, 76, .	3.2	11
56	Oscillating behavior of high-pressure stability observed in the immiscible Co–Cu system by first-principles calculation. Journal of Applied Physics, 2007, 101, 056102.	2.5	3
57	Long-range empirical potential model: Application to fcc transition metals and alloys. Physical Review B, 2007, 75, .	3.2	43
58	First-Principles Calculation of the Structural, Magnetic, and Electronic Properties of the CoxCu1-x Solid Solutions Using Special Quasirandom Structures. Journal of the Physical Society of Japan, 2007, 76, 024605.	1.6	12
59	Positive correlation between the magnetic moment of Fe and atomic volume in the binary Fe–(Cu, Ag,) Tj ETQq.	1 1 0.7843 5.2	814 rgBT /
60	Extended Finnis–Sinclair potential for bcc and fcc metals and alloys. Journal of Physics Condensed Matter, 2006, 18, 4527-4542.	1.8	119
61	First-principles calculations of the structural stability and magnetic property of the metastable phases in the equilibrium immiscible Co–Au system. Journal of Physics Condensed Matter, 2006, 18, 4345-4353.	1.8	7
62	Observation of magnetism in the nanoscale amorphous ruthenium clusters prepared by ion beam mixing. Applied Physics Letters, 2006, 89, 262511.	3.3	11
63	Nonequilibrium Solid Phase Formation Studied by Lattice Dynamics Calculation and Ion Beam Mixing in an Immiscible Coâ€"Ag System ChemInform, 2005, 36, no.	0.0	O
64	Role of spatial valence charge density on the metastability of an immiscible binary metal system at equilibrium. Physical Review B, 2005, 72, .	3.2	12
65	Construction ofn-body potentials for hcp-bcc metal systems within the framework of embedded atom method. Physical Review B, 2005, 71, .	3.2	10
66	Nonequilibrium Solid Phase Formation Studied by Lattice Dynamics Calculation and Ion Beam Mixing in an Immiscible Coâ ⁻ 'Ag System. Journal of Physical Chemistry B, 2005, 109, 9362-9367.	2.6	5
67	Calculation of phonon spectra to predict the high-pressure metastable phase in an equilibrium immiscible Cu–Ta system. Applied Physics Letters, 2004, 85, 1517-1519.	3.3	7
68	Simulation of a confined polymer in solution using the dissipative particle dynamics method. International Journal of Thermophysics, 1994, 15, 1093-1101.	2.1	143