MÃ;rcio José Rossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7689848/publications.pdf

Version: 2024-02-01

45 papers 1,169 citations

16 h-index 395702 33 g-index

45 all docs

45 docs citations

45 times ranked

1572 citing authors

#	Article	IF	CITATIONS
1	New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance. PLoS ONE, 2014, 9, e99168.	2.5	206
2	Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant–Bacterial Interactions. Frontiers in Plant Science, 2018, 9, 114.	3.6	174
3	Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnology Reports (Amsterdam,) Tj ETQq1	1 0. 4 8431	4 rgßT /Ove-lo
4	Antiherpetic activity of a sulfated polysaccharide from Agaricus brasiliensis mycelia. Antiviral Research, 2011, 92, 108-114.	4.1	75
5	<i>In Vivo</i> Anti-Herpes Simplex Virus Activity of a Sulfated Derivative of Agaricus brasiliensis Mycelial Polysaccharide. Antimicrobial Agents and Chemotherapy, 2013, 57, 2541-2549.	3.2	48
6	Valorization of chia (Salvia hispanica) seed cake by means of supercritical fluid extraction. Journal of Supercritical Fluids, 2016, 112, 67-75.	3.2	47
7	ACC deaminase plays a major role in Pseudomonas fluorescens YsS6 ability to promote the nodulation of Alpha- and Betaproteobacteria rhizobial strains. Archives of Microbiology, 2019, 201, 817-822.	2.2	44
8	Characterization and cytotoxic activity of sulfated derivatives of polysaccharides from Agaricus brasiliensis. International Journal of Biological Macromolecules, 2013, 57, 265-272.	7.5	43
9	Determination of Oxygen Solubility in Liquid Media. ISRN Chemical Engineering, 2012, 2012, 1-5.	1.2	37
10	Antioxidant and antibacterial potential of butia (Butia catarinensis) seed extracts obtained by supercritical fluid extraction. Journal of Supercritical Fluids, 2017, 119, 229-237.	3.2	33
11	The extreme plantâ€growthâ€promoting properties of <i>Pantoea phytobeneficialis</i> MSR2 revealed by functional and genomic analysis. Environmental Microbiology, 2020, 22, 1341-1355.	3.8	29
12	Inoculum production of the ectomycorrhizal fungus Pisolithus microcarpus in an airlift bioreactor. Applied Microbiology and Biotechnology, 2002, 59, 175-181.	3.6	28
13	Exopolysaccharides from Lactobacillus plantarum induce biochemical and physiological alterations in tomato plant against bacterial spot. Applied Microbiology and Biotechnology, 2018, 102, 4741-4753.	3.6	26
14	Arbuscular mycorrhizal fungi in the growth and extraction of trace elements by <i>Chrysopogon zizanioides</i> (vetiver) in a substrate containing coal mine wastes. International Journal of Phytoremediation, 2017, 19, 113-120.	3.1	25
15	Isolation and characterization of novel soil- and plant-associated bacteria with multiple phytohormone-degrading activities using a targeted methodology. Access Microbiology, 2019, 1, e000053.	0.5	24
16	Apple Aminoacid Profile and Yeast Strains in the Formation of Fusel Alcohols and Esters in Cider Production. Journal of Food Science, 2015, 80, C1170-7.	3.1	23
17	Morphological and ultrastructural characterization of the acidophilic and lipid-producer strain Chlamydomonas acidophila LAFIC-004 (Chlorophyta) under different culture conditions. Protoplasma, 2017, 254, 1385-1398.	2.1	21
18	Nonâ€specific transient mutualism between the plant parasitic nematode, <i>Bursaphelenchus xylophilus</i> , and the opportunistic bacterium <i>Serratia quinivorans</i> BXF1, a plantâ€growth promoting pine endophyte with antagonistic effects. Environmental Microbiology, 2016, 18, 5265-5276.	3.8	15

#	Article	IF	Citations
19	Mass separation and in vitro immunological activity of membrane-fractionated polysaccharides from fruiting body and mycelium of Agaricus subrufescens. Biotechnology and Bioprocess Engineering, 2012, 17, 804-811.	2.6	14
20	Nanofiltration of polysaccharides from Agaricus subrufescens. Applied Microbiology and Biotechnology, 2013, 97, 9993-10002.	3.6	12
21	Production of polysaccharide from Agaricus subrufescens Peck on solid-state fermentation. Applied Microbiology and Biotechnology, 2013, 97, 123-133.	3.6	12
22	The modulation of leguminous plant ethylene levels by symbiotic rhizobia played a role in the evolution of the nodulation process. Heliyon, 2018, 4, e01068.	3.2	12
23	Genomic Analysis of the 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Pseudomonas thivervalensis SC5 Reveals Its Multifaceted Roles in Soil and in Beneficial Interactions With Plants. Frontiers in Microbiology, 2021, 12, 752288.	3.5	12
24	An efficient technique for in vitro preservation of Agaricus subrufescens (=A. brasiliensis). Annals of Microbiology, 2012, 62, 1279-1285.	2.6	11
25	Role of ACC Deaminase in Stress Control of Leguminous Plants. , 2016, , 179-192.		11
26	Microbially-enriched poultry litter-derived biochar for the treatment of acid mine drainage. Archives of Microbiology, 2018, 200, 1227-1237.	2.2	11
27	Improvement of Cupriavidus taiwanensis Nodulation and Plant Growth Promoting Abilities by the Expression of an Exogenous ACC Deaminase Gene. Current Microbiology, 2018, 75, 961-965.	2.2	9
28	Systematics of the <i>Gomphales</i> : the genus <i>Gomphus</i> sensu stricto. Mycotaxon, 2012, 120, 385-400.	0.3	8
29	Growth and Nutrition of Eucalypt Rooted Cuttings Promoted by Ectomycorrhizal Fungi in Commercial Nurseries. Revista Brasileira De Ciencia Do Solo, 2015, 39, 1554-1565.	1.3	8
30	Transfer and consumption of oxygen during the cultivation of the ectomycorrhizal fungus Rhizopogon nigrescens in an airlift bioreactor. Applied Microbiology and Biotechnology, 2017, 101, 1013-1024.	3.6	8
31	Multiple plant hormone catabolism activities: an adaptation to a plantâ€essociated lifestyle by ⟨i>Achromobacter⟨/i> spp Environmental Microbiology Reports, 2021, 13, 533-539.	2.4	8
32	Tolerância de fungos ectomicorrÃzicos e plantas associadas a nÃveis tóxicos de metais. Revista Arvore, 2013, 37, 825-833.	0.5	7
33	Alginate gel entrapped ectomycorrhizal inoculum promoted growth of cuttings of <i>Eucalyptus</i> clones under nursery conditions. Canadian Journal of Forest Research, 2019, 49, 978-985.	1.7	6
34	Viability and infectivity of an ectomycorrhizal inoculum produced in an airlift bioreactor and immobilized in calcium alginate. Brazilian Journal of Microbiology, 2006, 37, .	2.0	6
35	Genomic insights into the plant-associated lifestyle of Kosakonia radicincitans MUSA4, a diazotrophic plant-growth-promoting bacterium. Systematic and Applied Microbiology, 2022, 45, 126303.	2.8	6
36	Selection and characterization of coal mine autochthonous rhizobia for the inoculation of herbaceous legumes. Archives of Microbiology, 2017, 199, 991-1001.	2.2	5

#	Article	IF	Citations
37	Sensing of Yeast Inactivation by Electroporation. IEEE Sensors Journal, 2021, , 1-1.	4.7	5
38	In vitro EVALUATION OF EUCALYPTUS ECTOMYCORRHIZAE ON SUBSTRATE WITH PHOSPHORUS DOSES FOR FUNGAL PRE-SELECTION. Revista Arvore, 2015, 39, 127-136.	0.5	5
39	MICORRIZAS ARBUSCULARES NO CRESCIMENTO DE LEGUMINOSAS ARBÓREAS EM SUBSTRATO CONTENDO REJEITO DE MINERAÇÃO DE CARVÃO. Cerne, 2016, 22, 181-188.	0.9	4
40	Growth of the Ectomycorrhizal Fungus Pisolithus Microcarpus in different nutritional conditions. Brazilian Journal of Microbiology, 2011, 42, 624-32.	2.0	3
41	Pisolithus sp. tolerance to glyphosate and isoxaflutole in vitro. Revista Arvore, 2014, 38, 461-468.	0.5	2
42	Eucalyptus Field Growth and Colonization of Clones Pre-Inoculated with Ectomycorrhizal Fungi. Agronomy, 2022, 12, 1204.	3.0	2
43	Fungal Cultivation and Production of Polysaccharides. , 2015, , 377-416.		1
44	Fungal Polysaccharide Production for Dermatological Purposes. , 2021, , 1-32.		0
45	Fungal Polysaccharide Production for Dermatological Purposes. , 2022, , 381-412.		O