
Prinya Chindaprasirt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7689770/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel, 2011, 90, 2118-2124.	3.4	760
2	Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 2009, 22, 1073-1078.	1.8	668
3	Workability and strength of coarse high calcium fly ash geopolymer. Cement and Concrete Composites, 2007, 29, 224-229.	4.6	660
4	Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Management, 2009, 29, 539-543.	3.7	562
5	Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cement and Concrete Composites, 2005, 27, 425-428.	4.6	467
6	Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. Journal of Materials Science, 2012, 47, 4876-4883.	1.7	413
7	Workability and strength of lignite bottom ash geopolymer mortar. Journal of Hazardous Materials, 2009, 168, 44-50.	6.5	391
8	Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. Construction and Building Materials, 2015, 91, 1-8.	3.2	357
9	Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cement and Concrete Research, 2004, 34, 1087-1092.	4.6	345
10	The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Materials & Design, 2014, 55, 58-65.	5.1	328
11	Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Construction and Building Materials, 2008, 22, 1601-1606.	3.2	314
12	Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cement and Concrete Composites, 2014, 45, 9-14.	4.6	305
13	Effect of fly ash fineness on microstructure of blended cement paste. Construction and Building Materials, 2007, 21, 1534-1541.	3.2	298
14	Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cement and Concrete Composites, 2012, 34, 700-708.	4.6	276
15	Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Construction and Building Materials, 2008, 22, 932-938.	3.2	261
16	Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Materials & Design, 2010, 31, 4748-4754.	5.1	239
17	Cement paste characteristics and porous concrete properties. Construction and Building Materials, 2008, 22, 894-901.	3.2	238
18	High-Strength Geopolymer Using Fine High-Calcium Fly Ash. Journal of Materials in Civil Engineering, 2011, 23, 264-270.	1.3	235

#	Article	IF	CITATIONS
19	Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Materials & Design, 2014, 53, 269-274.	5.1	233
20	Strength and water permeability of concrete containing palm oil fuel ash and rice husk–bark ash. Construction and Building Materials, 2007, 21, 1492-1499.	3.2	222
21	Influence of recycled aggregate on fly ash geopolymer concrete properties. Journal of Cleaner Production, 2016, 112, 2300-2307.	4.6	217
22	High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. Journal of Hazardous Materials, 2018, 341, 257-267.	6.5	215
23	Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete. Construction and Building Materials, 2009, 23, 2641-2646.	3.2	212
24	Utilization of bagasse ash in high-strength concrete. Materials & Design, 2012, 34, 45-50.	5.1	212
25	Sulfate resistance of blended cements containing fly ash and rice husk ash. Construction and Building Materials, 2007, 21, 1356-1361.	3.2	210
26	Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. Journal of Cleaner Production, 2020, 252, 119797.	4.6	200
27	Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Construction and Building Materials, 2014, 63, 303-310.	3.2	192
28	Setting Time, Strength, and Bond of High-Calcium Fly Ash Geopolymer Concrete. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	189
29	High calcium fly ash geopolymer mortar containing Portland cement for use as repair material. Construction and Building Materials, 2015, 98, 482-488.	3.2	187
30	Properties of pervious geopolymer concrete using recycled aggregates. Construction and Building Materials, 2013, 42, 33-39.	3.2	179
31	Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate. Construction and Building Materials, 2016, 111, 15-21.	3.2	174
32	Effect of chemical admixtures on properties of high-calcium fly ash geopolymer. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 364-369.	2.4	173
33	Factors influencing strength development in clay–fly ash geopolymer. Construction and Building Materials, 2013, 47, 1125-1136.	3.2	169
34	Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. Journal of Cleaner Production, 2018, 172, 2892-2898.	4.6	169
35	Influence of fly ash fineness on the chloride penetration of concrete. Construction and Building Materials, 2007, 21, 356-361.	3.2	164
36	Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer. Construction and Building Materials, 2010, 24, 236-240.	3.2	163

#	Article	IF	CITATIONS
37	Pervious high-calcium fly ash geopolymer concrete. Construction and Building Materials, 2012, 30, 366-371.	3.2	156
38	Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. Journal of Cleaner Production, 2017, 148, 49-59.	4.6	153
39	Utilization of waste glass to enhance physical–mechanical properties of fired clay brick. Journal of Cleaner Production, 2016, 112, 3057-3062.	4.6	152
40	Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens. Construction and Building Materials, 2018, 161, 365-373.	3.2	152
41	Effect of grinding on chemical and physical properties of rice husk ash. International Journal of Minerals, Metallurgy and Materials, 2009, 16, 242-247.	2.4	147
42	Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Materials & Design, 2013, 52, 580-586.	5.1	146
43	Predicting the chloride penetration of fly ash concrete in seawater. Marine Structures, 2009, 22, 341-353.	1.6	137
44	Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer. Materials and Structures/Materiaux Et Constructions, 2013, 46, 375-381.	1.3	133
45	Effect of palm oil fuel ash fineness on the microstructure of blended cement paste. Construction and Building Materials, 2011, 25, 4095-4104.	3.2	127
46	Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive. Cement and Concrete Composites, 2012, 34, 819-824.	4.6	127
47	Mechanical and thermal properties of lightweight geopolymer mortar incorporating crumb rubber. Journal of Cleaner Production, 2018, 195, 1069-1080.	4.6	127
48	Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer. Waste Management, 2010, 30, 667-672.	3.7	124
49	Role of microwave radiation in curing the fly ash geopolymer. Advanced Powder Technology, 2013, 24, 703-707.	2.0	123
50	Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste. Construction and Building Materials, 2018, 186, 62-70.	3.2	122
51	Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Construction and Building Materials, 2018, 161, 37-44.	3.2	120
52	Very Low Loss Tangent and High Dielectric Permittivity in Pureâ€ <scp><scp>CaCu</scp></scp> ₃ <scp><fi< scp=""></fi<></scp> ₄ <scp>C/sc Ceramics Prepared by a Modified Solâ€Gel Process. Journal of the American Ceramic Society, 2012, 95, 1497-1500.</scp>	2p> <u>{</u> /scp> 1.9	₁₂
53	Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6616-6623.	2.6	115
54	Influence of rice husk–bark ash on mechanical properties of concrete containing high amount of recycled aggregates. Construction and Building Materials, 2008, 22, 1812-1819.	3.2	114

#	Article	IF	CITATIONS
55	Recycled aggregate high calcium fly ash geopolymer concrete with inclusion of OPC and nano-SiO2. Construction and Building Materials, 2018, 174, 244-252.	3.2	113
56	Use of lightweight aggregates in pervious concrete. Construction and Building Materials, 2013, 48, 585-591.	3.2	112
57	Natural fiber reinforced high calcium fly ash geopolymer mortar. Construction and Building Materials, 2020, 241, 118143.	3.2	111
58	Sulfate Resistance of Clay-Portland Cement and Clay High-Calcium Fly Ash Geopolymer. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	106
59	Factors affecting the shrinkage of fly ash geopolymers. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 100-104.	2.4	105
60	Use of crushed clay brick and pumice aggregates in lightweight geopolymer concrete. Construction and Building Materials, 2018, 188, 1025-1034.	3.2	100
61	Utilization of fly ash blends from pulverized coal and fluidized bed combustions in geopolymeric materials. Cement and Concrete Composites, 2011, 33, 55-60.	4.6	98
62	Performance of recycled aggregate concrete with rice husk ash as cement binder. Cement and Concrete Composites, 2020, 108, 103533.	4.6	97
63	Strength development and durability of alkali-activated fly ash mortar with calcium carbide residue as additive. Construction and Building Materials, 2018, 162, 714-723.	3.2	95
64	Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates. Construction and Building Materials, 2016, 111, 637-643.	3.2	93
65	Strength and resistance to sulfate and sulfuric acid of ground fluidized bed combustion fly ash–silica fume alkali-activated composite. Advanced Powder Technology, 2014, 25, 1087-1093.	2.0	91
66	Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 214-220.	2.4	85
67	Characterization and magnetic properties of cobalt ferrite nanoparticles. Journal of Alloys and Compounds, 2016, 664, 792-797.	2.8	85
68	Lightweight bricks made of diatomaceous earth, lime and gypsum. Ceramics International, 2009, 35, 471-478.	2.3	83
69	Correlation between initial SiO2/Al2O3, Na2O/Al2O3, Na2O/SiO2 and H2O/Na2O ratios on phase and microstructure of reaction products of metakaolin-rice husk ash geopolymer. Construction and Building Materials, 2019, 226, 406-417.	3.2	83
70	Hydrothermal synthesis of calcium sulfoaluminate–belite cement from industrial waste materials. Journal of Cleaner Production, 2016, 115, 273-283.	4.6	82
71	Shrinkage behavior of structural foam lightweight concrete containing glycol compounds and fly ash. Materials & Design, 2011, 32, 723-727.	5.1	78
72	TiO2-zeolite photocatalysts made of metakaolin and rice husk ash for removal of methylene blue dye. Powder Technology, 2017, 313, 417-426.	2.1	77

#	Article	IF	CITATIONS
73	Effect of carbon dioxide on chloride penetration and chloride ion diffusion coefficient of blended Portland cement mortar. Construction and Building Materials, 2008, 22, 1701-1707.	3.2	76
74	Electrical conductivity and compressive strength of carbon fiber reinforced fly ash geopolymeric composites. Construction and Building Materials, 2017, 135, 164-176.	3.2	76
75	Effect of W/B ratios on pozzolanic reaction of biomass ashes in Portland cement matrix. Cement and Concrete Composites, 2012, 34, 94-100.	4.6	72
76	Controlling ettringite formation in FBC fly ash geopolymer concrete. Cement and Concrete Composites, 2013, 41, 24-28.	4.6	71
77	Electrical conductivity and dielectric property of fly ash geopolymer pastes. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 94-99.	2.4	70
78	Synthesis of nanocomposite hydrogel based carboxymethyl starch/polyvinyl alcohol/nanosilver for biomedical materials. Carbohydrate Polymers, 2020, 248, 116767.	5.1	70
79	Pore Structure Changes of Blended Cement Pastes Containing Fly Ash, Rice Husk Ash, and Palm Oil Fuel Ash Caused by Carbonation. Journal of Materials in Civil Engineering, 2009, 21, 666-671.	1.3	69
80	High-Calcium Bottom Ash Geopolymer: Sorptivity, Pore Size, and Resistance to Sodium Sulfate Attack. Journal of Materials in Civil Engineering, 2013, 25, 105-111.	1.3	69
81	Development of high volume rice husk ash alumino silicate composites. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 654-659.	2.4	68
82	Synthesis of belite cement from lignite fly ash. Ceramics International, 2009, 35, 2415-2425.	2.3	67
83	Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue. Construction and Building Materials, 2020, 247, 118543.	3.2	66
84	Use of coal ash as geopolymer binder and coarse aggregate in pervious concrete. Construction and Building Materials, 2015, 96, 289-295.	3.2	65
85	Compressive strength, Bending and Fracture Characteristics of High Calcium Fly Ash Geopolymer Mortar Containing Portland Cement Cured at Ambient Temperature. Arabian Journal for Science and Engineering, 2016, 41, 1263-1271.	1.1	65
86	A study of fly ash–lime granule unfired brick. Powder Technology, 2008, 182, 33-41.	2.1	64
87	Mechanical Properties, Thermal Conductivity, and Sound Absorption of Pervious Concrete Containing Recycled Concrete and Bottom Ash Aggregates. KSCE Journal of Civil Engineering, 2018, 22, 1369-1376.	0.9	64
88	Thermal properties of lightweight concrete incorporating high contents of phase change materials. Construction and Building Materials, 2019, 207, 431-439.	3.2	63
89	Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber. Journal of Building Engineering, 2021, 41, 102403.	1.6	63
90	Synthesis of low-temperature calcium sulfoaluminate-belite cements from industrial wastes and their hydration: Comparative studies between lignite fly ash and bottom ash. Cement and Concrete Composites, 2017, 83, 10-19.	4.6	62

#	Article	IF	CITATIONS
91	Properties of high-calcium and low-calcium fly ash combination geopolymer mortar containing recycled aggregate. Heliyon, 2019, 5, e02513.	1.4	61
92	Mechanical and micromechanical properties of alkali activated fly-ash cement based on nano-indentation. Construction and Building Materials, 2016, 107, 95-102.	3.2	60
93	Eco-production of silica from sugarcane bagasse ash for use as a photochromic pigment filler. Scientific Reports, 2020, 10, 9890.	1.6	60
94	Influence of fineness of rice husk ash and additives on the properties of lightweight aggregate. Fuel, 2009, 88, 158-162.	3.4	59
95	Improved Dielectric and Nonlinear Electrical Properties of Fineâ€Grained CaCu ₃ Ti ₄ O ₁₂ Ceramics Prepared by a Glycineâ€Nitrate Process. Journal of the American Ceramic Society, 2014, 97, 1785-1790.	1.9	58
96	Influence of fly ash fineness and shape on the porosity and permeability of blended cement pastes. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 683-690.	2.4	55
97	Polyvinyl Alcohol (PVA)/Starch Bioactive Packaging Film Enriched with Antioxidants from Spent Coffee Ground and Citric Acid. Journal of Polymers and the Environment, 2018, 26, 3762-3772.	2.4	55
98	A Mix Design Procedure for Alkali-Activated High-Calcium Fly Ash Concrete Cured at Ambient Temperature. Advances in Materials Science and Engineering, 2018, 2018, 1-13.	1.0	55
99	Significantly improving the giant dielectric properties of CaCu3Ti4O12 ceramics by co-doping with Sr2+ and F- ions. Materials Research Bulletin, 2021, 133, 111043.	2.7	55
100	Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer. Construction and Building Materials, 2016, 104, 293-297.	3.2	54
101	Improved giant dielectric properties of CaCu ₃ Ti ₄ O ₁₂ via simultaneously tuning the electrical properties of grains and grain boundaries by F ^{â^'} substitution. RSC Advances, 2017, 7, 4092-4101.	1.7	54
102	Changes in compressive strength, microstructure and magnetic properties of a high-calcium fly ash geopolymer subjected to high temperatures. Construction and Building Materials, 2020, 265, 120650.	3.2	54
103	Drying shrinkage, strength and microstructure of alkali-activated high-calcium fly ash using FGD-gypsum and dolomite as expansive additive. Cement and Concrete Composites, 2020, 114, 103760.	4.6	54
104	Characterization of the high-calcium fly ash geopolymer mortar with hot-weather curing systems for sustainable application. Advanced Powder Technology, 2017, 28, 2317-2324.	2.0	53
105	Pressed lightweight concrete containing calcined diatomite aggregate. Construction and Building Materials, 2013, 47, 896-901.	3.2	49
106	Thermogravimetry of ternary cement blends. Journal of Thermal Analysis and Calorimetry, 2013, 113, 1079-1090.	2.0	48
107	Optimizing mix proportion and properties of lightweight concrete incorporated phase change material paraffin/recycled concrete block composite. Construction and Building Materials, 2016, 127, 475-483.	3.2	48
108	Effect of sodium hydroxide and sodium silicate solutions on strengths of alkali activated high calcium fly ash containing Portland cement. KSCE Journal of Civil Engineering, 2017, 21, 2202-2210.	0.9	47

#	Article	IF	CITATIONS
109	Cellular Lightweight Concrete Containing Pozzolan Materials. Procedia Engineering, 2011, 14, 1157-1164.	1.2	46
110	Use of Palm Oil Fuel Ash to Improve Chloride and Corrosion Resistance of High-Strength and High-Workability Concrete. Journal of Materials in Civil Engineering, 2011, 23, 499-503.	1.3	46
111	Properties of lightweight high calcium fly ash geopolymer concretes containing recycled packaging foam. Construction and Building Materials, 2015, 94, 408-413.	3.2	46
112	Resistance to sulfate attack and underwater abrasion of fiber reinforced cement mortar. Construction and Building Materials, 2018, 189, 686-694.	3.2	46
113	Optimization of Biodegradable Foam Composites from Cassava Starch, Oil Palm Fiber, Chitosan and Palm Oil Using Taguchi Method and Grey Relational Analysis. Journal of Polymers and the Environment, 2017, 25, 378-390.	2.4	45
114	Curing kinetic, thermal and adhesive properties of epoxy resin cured with cashew nut shell liquid. Thermochimica Acta, 2015, 600, 20-27.	1.2	44
115	Cellular lightweight concrete containing high-calcium fly ash and natural zeolite. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 462-471.	2.4	43
116	Portland Cement-TiO2 triboelectric nanogenerator for robust large-scale mechanical energy harvesting and instantaneous motion sensor applications. Nano Energy, 2020, 74, 104802.	8.2	43
117	Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks. , 2015, , 103-127.		42
118	Characterization of an environment friendly lightweight concrete containing ethyl vinyl acetate waste. Materials and Design, 2016, 96, 350-356.	3.3	42
119	Influence of loading history upon the compressive properties of concrete. Magazine of Concrete Research, 1980, 32, 89-100.	0.9	41
120	Leaching of heavy metals from solidified waste using Portland cement and zeolite as a binder. Waste Management, 2012, 32, 1459-1467.	3.7	41
121	Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 872-878.	2.4	41
122	Improvement of durability of cement pipe with high calcium fly ash geopolymer covering. Construction and Building Materials, 2016, 112, 956-961.	3.2	41
123	Investigation on the strength, chloride migration, and water permeability of eco-friendly concretes from industrial by-product materials. Journal of Cleaner Production, 2018, 172, 1691-1698.	4.6	39
124	Assessing the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste. Materials & Design, 2012, 42, 424-433.	5.1	38
125	Recycled Concrete Aggregates in Roadways: Laboratory Examination of Self-Cementing Characteristics. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	38
126	Pressed lightweight fly ash-OPC geopolymer concrete containing recycled lightweight concrete aggregate. Construction and Building Materials, 2016, 127, 450-456.	3.2	38

#	Article	IF	CITATIONS
127	Utilization of hemp concrete using hemp shiv as coarse aggregate with aluminium sulfate [Al2(SO4)3] and hydrated lime [Ca(OH)2] treatment. Construction and Building Materials, 2017, 156, 435-442.	3.2	38
128	Fire-resistant geopolymer bricks synthesized from high-calcium fly ash with outdoor heat exposure. Clean Technologies and Environmental Policy, 2018, 20, 1097-1103.	2.1	38
129	Mixed cement containing fly ash for masonry and plastering work. Construction and Building Materials, 2005, 19, 612-618.	3.2	37
130	Characterizations of FBC/PCC fly ash geopolymeric composites. Construction and Building Materials, 2014, 66, 72-78.	3.2	37
131	Apatite formation on calcined kaolin–white Portland cement geopolymer. Materials Science and Engineering C, 2015, 51, 1-6.	3.8	37
132	Properties of wood flour/expanded polystyrene waste composites modified with diammonium phosphate flame retardant. Polymer Composites, 2015, 36, 604-612.	2.3	37
133	Effect of calcium-rich compounds on setting time and strength development of alkali-activated fly ash cured at ambient temperature. Case Studies in Construction Materials, 2018, 9, e00198.	0.8	36
134	Creep properties of cement and alkali activated fly ash materials using nanoindentation technique. Construction and Building Materials, 2018, 168, 547-555.	3.2	35
135	Fabrication of durable superhydrophobic epoxy/cashew nut shell liquid based coating containing flower-like zinc oxide for continuous oil/water separation. Surface and Coatings Technology, 2019, 366, 106-113.	2.2	35
136	Effect of Oregano Essential Oil Content on Properties of Green Biocomposites Based on Cassava Starch and Sugarcane Bagasse for Bioactive Packaging. Journal of Polymers and the Environment, 2018, 26, 311-318.	2.4	34
137	Exponentially aging functions coupled with time-dependent chloride transport model for predicting service life of surface-treated concrete in tidal zone. Cement and Concrete Research, 2019, 120, 1-12.	4.6	34
138	Autogenous and drying shrinkages of mortars and pore structure of pastes made with activated binder of calcium carbide residue and fly ash. Construction and Building Materials, 2020, 230, 116962.	3.2	34
139	Effect of fly ash/silica fume ratio and curing condition on mechanical properties of fiber-reinforced geopolymer. Journal of Sustainable Cement-Based Materials, 2020, 9, 218-232.	1.7	34
140	Strength and Carbonation Model of Rice Husk Ash Cement Mortar with Different Fineness. Journal of Materials in Civil Engineering, 2010, 22, 253-259.	1.3	33
141	Plaster materials from waste calcium sulfate containing chemicals, organic fibers and inorganic additives. Construction and Building Materials, 2011, 25, 3193-3203.	3.2	33
142	Use of phase change material to improve thermal properties of lightweight geopolymer panel. Materials and Structures/Materiaux Et Constructions, 2016, 49, 4637-4645.	1.3	33
143	Mechanical properties, chloride resistance and microstructure of Portland fly ash cement concrete containing high volume bagasse ash. Journal of Building Engineering, 2020, 31, 101415.	1.6	33
144	Comparative study on morphology of ground sub-bituminus FBC fly ash geopolymeric material. Advanced Powder Technology, 2015, 26, 1053-1057.	2.0	32

#	Article	IF	CITATIONS
145	Durability and Mechanical Properties of Pavement Concrete Containing Bagasse Ash. Materials Today: Proceedings, 2019, 17, 1612-1626.	0.9	32
146	Effect of self-treatment process on properties of natural fiber-reinforced geopolymer composites. Materials and Manufacturing Processes, 2020, 35, 1120-1128.	2.7	32
147	Strength and chloride resistance of blended Portland cement mortar containing palm oil fuel ash and fly ash. International Journal of Minerals, Metallurgy and Materials, 2009, 16, 475-481.	2.4	31
148	Lime-calcined clay materials with alkaline activation: Phase development and reaction transition zone. Applied Clay Science, 2014, 95, 357-364.	2.6	31
149	Bioactive Starch Foam Composite Enriched With Natural Antioxidants from Spent Coffee Ground and Essential Oil. Starch/Staerke, 2018, 70, 1700238.	1.1	31
150	Improving thermal properties of exterior plastering mortars with phase change materials with different melting temperatures: paraffin and polyethylene glycol. Advances in Building Energy Research, 2019, 13, 220-240.	1.1	31
151	Synthesis and characterization of Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics by hydrothermal method. Ceramics International, 2014, 40, 13025-13031.	2.3	30
152	Use of ternary blend of Portland cement and two pozzolans to improve durability of high-strength concrete. KSCE Journal of Civil Engineering, 2014, 18, 1745-1752.	0.9	30
153	Mechanical and Thermal Properties of Recycling Lightweight Pervious Concrete. Arabian Journal for Science and Engineering, 2015, 40, 443-450.	1.1	30
154	Optical and dielectric properties of nano-sized tricalcium aluminate hexahydrate (C3AH6) cement. Construction and Building Materials, 2018, 179, 57-65.	3.2	30
155	Bioactive Nanocomposite Film Based on Cassava Starch/Polyvinyl Alcohol Containing Green Synthesized Silver Nanoparticles. Journal of Polymers and the Environment, 2021, 29, 672-684.	2.4	30
156	Geopolymer/Zeolite composite materials with adsorptive and photocatalytic properties for dye removal. PLoS ONE, 2020, 15, e0241603.	1.1	30
157	An evaluation of the suitability of SUPERPAVE and Marshall asphalt mix designs as they relate to Thailand's climatic conditions. Construction and Building Materials, 2013, 40, 961-970.	3.2	29
158	Effect of particle size on the dielectric and piezoelectric properties of 0–3BCTZO/cement composites. Ceramics International, 2014, 40, 1209-1213.	2.3	29
159	Thermal storage properties of lightweight concrete incorporating phase change materials with different fusion points in hybrid form for high temperature applications. Heliyon, 2020, 6, e04863.	1.4	29
160	Fatigue Assessment of Cement-Treated Base for Roads: An Examination of Beam-Fatigue Tests. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	28
161	Characterization of porous alkali-activated fly ash composite as a solid absorbent. International Journal of Greenhouse Gas Control, 2019, 85, 30-35.	2.3	28
162	Use of recycled aggregates in pressed fly ash geopolymer concrete. Environmental Progress and Sustainable Energy, 2020, 39, e13327.	1.3	28

#	Article	IF	CITATIONS
163	Resistance to algae and fungi formation of high calcium fly ash geopolymer paste containing TiO2. Journal of Building Engineering, 2019, 25, 100817.	1.6	27
164	Cement mortars hybridized with zeolite and zeolite-like materials made of lignite bottom ash for heavy metal encapsulation. Journal of Cleaner Production, 2013, 41, 31-41.	4.6	26
165	Effect of High-Speed Mixing on Properties of High Calcium Fly Ash Geopolymer Paste. Arabian Journal for Science and Engineering, 2014, 39, 6001-6007.	1.1	26
166	Structural Lightweight Concrete Containing Recycled Lightweight Concrete Aggregate. KSCE Journal of Civil Engineering, 2018, 22, 3077-3084.	0.9	26
167	Effects of carbon fiber on mechanical and electrical properties of fly ash geopolymer composite. Materials Today: Proceedings, 2018, 5, 14017-14025.	0.9	26
168	Abrasion resistance behaviour of fly ash based geopolymer using nanoindentation and artificial neural network. Construction and Building Materials, 2019, 212, 635-644.	3.2	26
169	An investigation of sulfate effects on compaction characteristics and strength development of cement-treated sulfate bearing clay subgrade. Road Materials and Pavement Design, 2021, 22, 2396-2409.	2.0	26
170	Fabrication of self-cleaning fly ash/polytetrafluoroethylene material for cement mortar spray-coating. Journal of Cleaner Production, 2020, 264, 121748.	4.6	26
171	Challenge of adopting relatively low strength and self-cured geopolymer for road construction application: a review and primary laboratory study. International Journal of Pavement Engineering, 2021, 22, 1454-1468.	2.2	25
172	Performances of SDCM and DCM walls under deep excavation in soft clay: Field tests and 3D simulations. Soils and Foundations, 2019, 59, 1728-1739.	1.3	25
173	Microstructural evolution, nonâ€Ohmic properties, and giant dielectric response in CaCu ₃ Ti _{4â^'<i>x</i>} Ge _{<i>x</i>} O ₁₂ ceramics. Journal of the American Ceramic Society, 2017, 100, 3478-3487.	1.9	24
174	Thermal and sound properties of concrete mixed with high porous aggregates from manufacturing waste impregnated with phase change material. Journal of Building Engineering, 2020, 29, 101111.	1.6	24
175	Hydrophobicity and efflorescence of lightweight fly ash geopolymer incorporated with calcium stearate. Journal of Cleaner Production, 2022, 364, 132449.	4.6	24
176	Investigation of compressive strength and microstructures of activated cement free binder from fly ash - calcium carbide residue mixture. Journal of Materials Research and Technology, 2019, 8, 4757-4765.	2.6	23
177	Use of paraffin impregnated lightweight aggregates to improve thermal properties of concrete panels. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1793-1803.	1.3	22
178	Synthesis of polypropylene fiber/high-calcium fly ash geopolymer with outdoor heat exposure. Clean Technologies and Environmental Policy, 2017, 19, 1985-1992.	2.1	22
179	Adhesion characterisation of Portland cement concrete and alkali-activated binders. Advances in Cement Research, 2019, 31, 69-79.	0.7	22
180	Use of disposed waste ash from landfills to replace Portland cement. Waste Management and Research, 2009, 27, 588-594.	2.2	21

#	Article	IF	CITATIONS
181	Thermoelectric Energy Conversion of p–Ca3Co4O9/n–CaMnO3 Module. Energy Procedia, 2014, 61, 1067-1070.	1.8	21
182	Strength and chloride resistance of the blended Portland cement mortar containing rice husk ash and ground river sand. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3771-3777.	1.3	21
183	Characterization of paraffin/ultrasonic-treated diatomite for use as phase change material in thermal energy storage of buildings. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1293-1303.	2.0	21
184	Microstructure, dielectric and piezoelectric properties of 0–3 lead free barium zirconate titanate ceramic-Portland fly ash cement composites. Ceramics International, 2018, 44, 76-82.	2.3	20
185	Dual-responsive shape memory and self-healing ability of a novel copolymer from epoxy/cashew nut shell liquid and polycaprolactone. Polymer Testing, 2020, 81, 106159.	2.3	20
186	Performance and evaluation of calcium carbide residue stabilized lateritic soil for construction materials. Case Studies in Construction Materials, 2020, 13, e00389.	0.8	20
187	The effect of cation distribution on the magnetic properties of CoFe2O4 nanoparticles. Results in Physics, 2021, 24, 104112.	2.0	20
188	The effects of replacement fly ash with diatomite in geopolymer mortar. Computers and Concrete, 2012, 9, 427-437.	0.7	20
189	Strength, porosity, and chloride resistance of mortar using the combination of two kinds of pozzolanic materials. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 808-814.	2.4	19
190	Greatly enhanced dielectric permittivity in poly(vinylidene fluoride)-based polymeric composites induced by Na1/3Ca1/3Bi1/3Cu3Ti4O12 nanoparticles. Journal of Materials Science: Materials in Electronics, 2016, 27, 9650-9655.	1.1	19
191	Effect of Oil Palm Fiber Content on the Physical and Mechanical Properties and Microstructure of High-Calcium Fly Ash Geopolymer Paste. Arabian Journal for Science and Engineering, 2018, 43, 5215-5224.	1.7	19
192	Boosting the Power Output of a Cement-Based Triboelectric Nanogenerator by Enhancing Dielectric Polarization with Highly Dispersed Carbon Black Nanoparticles toward Large-Scale Energy Harvesting from Human Footsteps. ACS Sustainable Chemistry and Engineering, 2022, 10, 4588-4598.	3.2	19
193	Role of Filler Effect and Pozzolanic Reaction of Biomass Ashes on Hydrated Phase and Pore Size Distribution of Blended Cement Paste. Journal of Materials in Civil Engineering, 2014, 26, .	1.3	18
194	Synthesis of porous alkali-activated materials for high-acidic wastewater treatment. Journal of Water Process Engineering, 2020, 33, 101118.	2.6	18
195	Optimization of ultrasound-assisted extraction of anthocyanins and bioactive compounds from butterfly pea petals using Taguchi method and Grey relational analysis. Journal of Food Science and Technology, 2020, 57, 3720-3730.	1.4	18
196	Effect of graphene oxide on single fiber pullout behavior. Construction and Building Materials, 2021, 280, 122539.	3.2	18
197	UTILIZATION OF CRUMB RUBBER AS AGGREGATE IN HIGH CALCIUM FLY ASH GEOPOLYMER MORTARS. International Journal of GEOMATE, 2019, 17, .	0.1	18
198	Synergistic effect of starch/polyvinyl alcohol/citric acid films decorated with in-situ green-synthesized nano silver on bioactive packaging films. Journal of Environmental Chemical Engineering, 2021, 9, 106793.	3.3	18

#	Article	IF	CITATIONS
199	Use of Rice Husk-Bark Ash in Producing Self-Compacting Concrete. Advances in Civil Engineering, 2014, 2014, 1-6.	0.4	17
200	Residual flexural behavior of fiber reinforced concrete after heating. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	17
201	Hemp Fiber Reinforced Geopolymer Composites: Effects of NaOH Concentration on Fiber Pre-Treatment Process. Key Engineering Materials, 0, 841, 166-170.	0.4	17
202	Manuscript title: Development of strength prediction models for fly ash based geopolymer concrete. Journal of Building Engineering, 2020, 32, 101704.	1.6	17
203	Heat evolution, strengths, and drying shrinkage of concrete containing high volume ground bagasse ash with different LOIs. Construction and Building Materials, 2020, 258, 119443.	3.2	17
204	Properties of cellular lightweight high calcium bottom ash-portland cement geopolymer mortar. Case Studies in Construction Materials, 2020, 12, e00337.	0.8	17
205	Synergistic effect of fly ash and glass cullet additive on properties of fire clay bricks. Journal of Building Engineering, 2021, 44, 102942.	1.6	17
206	Influence of bagasse ash and recycled concrete aggregate on hardened properties of high-strength concrete. Materiales De Construccion, 2018, 68, 158.	0.2	17
207	Influence of alkalinity on self-treatment process of natural fiber and properties of its geopolymeric composites. Construction and Building Materials, 2022, 316, 125817.	3.2	17
208	Recycled Non-Biodegradable polyethylene terephthalate waste as fine aggregate in fly ash geopolymer and cement mortars. Construction and Building Materials, 2022, 328, 127084.	3.2	17
209	Entrapment of nano-ZnO into alginate/polyvinyl alcohol beads with different crosslinking ions for fertilizer applications. International Journal of Biological Macromolecules, 2021, 181, 349-356.	3.6	16
210	Comparative mechanical performances of cement-treated sand reinforced with fiber for road and pavement applications. Transportation Geotechnics, 2021, 30, 100626.	2.0	16
211	Comparative study of fire-resistant behaviors of high-calcium fly ash geopolymer mortar containing zeolite and mullite. Journal of Sustainable Cement-Based Materials, 2020, 9, 307-321.	1.7	15
212	Mathematical model of strength and porosity of ternary blend Portland rice husk ash and fly ash cement mortar. Computers and Concrete, 2008, 5, 75-88.	0.7	15
213	Microstructure and strength of blended FBC-PCC fly ash geopolymer containing gypsum as an additive. ScienceAsia, 2012, 38, 175.	0.2	15
214	Hybrid high calcium fly ash alkali-activated repair material for concrete exposed to sulfate environment. Journal of Building Engineering, 2022, 45, 103590.	1.6	15
215	Smart conductive nanocomposite hydrogel containing green synthesized nanosilver for use in an eco-friendly strain sensor. Cellulose, 2022, 29, 273-286.	2.4	15
216	The properties and durability ofÂautoclaved aerated concrete masonry blocks. , 2015, , 215-230.		14

#	Article	IF	CITATIONS
217	Properties of Concrete Pedestrian Blocks Containing Crumb Rubber from Recycle Waste Tyres Reinforced with Steel Fibres. Case Studies in Construction Materials, 2019, 11, e00304.	0.8	14
218	An anisotropic hyperelastic model with an application to soft tissues. European Journal of Mechanics, A/Solids, 2019, 78, 103845.	2.1	14
219	Calcium phosphate powders synthesized from CaCO3 and CaO of natural origin using mechanical activation in different media combined with solid-state interaction. Materials Science and Engineering C, 2021, 118, 111333.	3.8	14
220	Sustainable utilization of water treatment residue as a porous geopolymer for iron and manganese removals from groundwater. Journal of Environmental Management, 2022, 302, 114036.	3.8	14
221	Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar. Nanomaterials, 2022, 12, 943.	1.9	14
222	Synthesis of zeolite phases from combustion by-products. Waste Management and Research, 2010, 28, 1122-1132.	2.2	13
223	Reuse of recycled aggregate in the production of alkali-activated concrete. , 2015, , 519-538.		13
224	Influence of Activation Methods on Strength and Chloride Resistance of Concrete Using Calcium Carbide Residue–Fly Ash Mixture as a New Binder. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	13
225	Effect of free oxygen radical anions and free electrons in a Ca12Al14O33 cement structure on its optical, electronic and antibacterial properties. Heliyon, 2019, 5, e01808.	1.4	13
226	Properties of NdFeB magnetic cement. Cement and Concrete Composites, 2019, 103, 204-212.	4.6	13
227	Bioconversion of Saccharum officinarum Leaves for Ethanol Production Using Separate Hydrolysis and Fermentation Processes. Waste and Biomass Valorization, 2019, 10, 817-825.	1.8	13
228	Use of construction and demolition waste (CDW) for alkali-activated or geopolymer concrete. , 2020, , 385-403.		13
229	Green synthesis of nanosilver coating on paper for ripening delay of fruits under visible light. Journal of Environmental Chemical Engineering, 2021, 9, 105094.	3.3	13
230	Gold-Nanoparticle-Deposited TiO2 Nanorod/Poly(Vinylidene Fluoride) Composites with Enhanced Dielectric Performance. Polymers, 2021, 13, 2064.	2.0	13
231	Properties of pervious concrete containing high-calcium fly ash. Computers and Concrete, 2016, 17, 337-351.	0.7	13
232	A mathematical model for the prediction of damage in concrete. Cement and Concrete Research, 1981, 11, 581-590.	4.6	12
233	Case investigation on application of steel fibers in roller compacted concrete pavement in Thailand. Case Studies in Construction Materials, 2019, 11, e00271.	0.8	12
234	Lightweight Geopolymer Concrete Containing Recycled Plastic Beads. Key Engineering Materials, 0, 801, 377-384.	0.4	12

#	Article	IF	CITATIONS
235	Bioactivity enhancement of calcined kaolin geopolymer with CaCl2 treatment. ScienceAsia, 2016, 42, 407.	0.2	12
236	Effect of synthetic microfiber and viscosity modifier agent on layer deformation, viscosity, and open time of cement mortar for 3D printing application. Construction and Building Materials, 2022, 319, 126111.	3.2	12
237	Reducing Loss Tangent by Controlling Microstructure and Electrical Responses in CaCu ₃ Ti ₄ O ₁₂ Ceramics Prepared by a Simple Combustion Method. International Journal of Applied Ceramic Technology, 2013, 10, E77.	1.1	11
238	Investigation of properties of lightweight concrete with calcined diatomite aggregate. KSCE Journal of Civil Engineering, 2014, 18, 1429-1435.	0.9	11
239	Dielectric and piezoelectric properties of lead-free Ba 0.85 Ca 0.15 Ti 0.9â^'x Zr 0.1 Cu x O 3 ceramics synthesized by a hydrothermal method. Applied Surface Science, 2016, 369, 334-340.	3.1	11
240	Properties of hooked end steel fiber reinforced acrylic modified concrete. Construction and Building Materials, 2018, 186, 1247-1255.	3.2	11
241	Microstructure and phase characterizations of fly ash cements by alkali activation. Journal of Thermal Analysis and Calorimetry, 2020, 142, 167-174.	2.0	11
242	Properties of polypropylene fiber reinforced cellular lightweight high calcium fly ash geopolymer mortar. Case Studies in Construction Materials, 2021, 15, e00730.	0.8	11
243	Setting, segregation and bleeding of alkali-activated cement, mortar and concrete binders. , 2015, , 113-131.		10
244	Carbon fiber/epoxy vitrimer composite patch cured with bioâ€based curing agents for oneâ€step repair metallic sheet and its recyclability. Journal of Applied Polymer Science, 2021, 138, 51406.	1.3	10
245	Improvement of recycled concrete aggregate using alkali-activated binder treatment. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	1.3	10
246	Properties of Steel Fiber Reinforced Geopolymer. Key Engineering Materials, 0, 659, 143-148.	0.4	9
247	Preparation of Zeolite Nanocrystals via Hydrothermal and Solvothermal Synthesis Using of Rice Husk Ash and Metakaolin. Materials Science Forum, 2016, 872, 242-247.	0.3	9
248	Sulfoaluminate cement-based concrete. , 2018, , 355-385.		9
249	In vitro surface reaction in SBF of a non-crystalline aluminosilicate (geopolymer) material. Journal of the Australian Ceramic Society, 2019, 55, 11-17.	1.1	9
250	Dielectric and electrical properties of nano-Ag/C3AH6 nanocomposites. Applied Surface Science, 2019, 483, 294-301.	3.1	9
251	Thermal behaviour of concrete sandwich panels incorporating phase change material. Advances in Building Energy Research, 2020, , 1-25.	1.1	9
252	Significantly Enhanced Dielectric Properties of Ag-Deposited (In1/2Nb1/2)0.1Ti0.9O2/PVDF Polymer Composites. Polymers, 2021, 13, 1788.	2.0	9

#	Article	IF	CITATIONS
253	Beneficial utilization of recycled asphaltic concrete aggregate in high calcium fly ash geopolymer concrete. Case Studies in Construction Materials, 2021, 15, e00615.	0.8	9
254	Strength and chloride penetration of Portland cement mortar containing palm oil fuel ash and ground river sand. Computers and Concrete, 2009, 6, 391-401.	0.7	9
255	Optimum conditions for preparation of bio-calcium from blood cockle and golden apple snail shells and characterization. ScienceAsia, 2019, 45, 10.	0.2	9
256	Dielectric Properties of 2–2 PMN-PT/Cement Composites. Ferroelectrics, Letters Section, 2012, 39, 76-80.	0.4	8
257	Effect of microwave-assisted curing process on strength development and curing duration of cellular lightweight geopolymer mortar. Materials and Manufacturing Processes, 2021, 36, 1040-1048.	2.7	8
258	Alkali-activated material synthesized from palm oil fuel ash for Cu/Zn ion removal from aqueous solutions. Journal of Materials Research and Technology, 2021, 13, 440-448.	2.6	8
259	Dense-Graded Hot Mix Asphalt with 100% Recycled Concrete Aggregate Based on Thermal-Mechanical Surface Treatment. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	8
260	Chloride penetration and corrosion resistance of ground fly ash blended cement mortar. International Journal of Materials Research, 2011, 102, 335-339.	0.1	7
261	Dielectric Responses and Electrical Properties of CaCu3Ti4-xVxO12Ceramics Prepared by a Simple Poly(ethylene glycol) Sol–Gel Route. Japanese Journal of Applied Physics, 2013, 52, 06GF05.	0.8	7
262	Effect of Addition of Microsilica and Nanoalumina on Compressive Strength and Products of High Calcium Fly Ash Geopolymer with Low Concentration NaOH. Advanced Materials Research, 0, 1103, 29-36.	0.3	7
263	Use of burnt clay aggregate as phase change material carrier to improve thermal properties of concrete panel. Case Studies in Construction Materials, 2019, 11, e00242.	0.8	7
264	Finishing methods and compressive strength-void ratio relationships of in-situ porous concrete pavement. Computers and Concrete, 2012, 10, 231-240.	0.7	7
265	Mechanical properties and electrical resistivity of multiwall carbon nanotubes incorporated into high calcium fly ash geopolymer. Case Studies in Construction Materials, 2021, 15, e00785.	0.8	7
266	Dielectric and Piezoelectric Properties of 2–2 PZT-Portland Cement Composites. Integrated Ferroelectrics, 2013, 149, 89-94.	0.3	6
267	Investigation on the Dielectric Properties of 0–3 Lead Zirconate Titanate-Geopolymer Composites. Ferroelectrics, 2013, 451, 84-89.	0.3	6
268	Compressive Strength and Microstructure of 0–3 Lead Zirconate Titanate Ceramic-Portland Cement Composites. Ferroelectrics, 2013, 457, 53-61.	0.3	6
269	Properties of alkali activated silica fume–Al(OH)3–fluidized bed combustion fly ash composites. Materials and Structures/Materiaux Et Constructions, 2015, 48, 531-540.	1.3	6
270	Improved dielectric properties of PVDF composites by employing Mg-doped La1.9Sr0.1NiO4 particles as a filler. Journal of Materials Science: Materials in Electronics, 2017, 28, 11762-11768.	1.1	6

#	Article	IF	CITATIONS
271	Effect of elevated temperature on polypropylene fiber reinforced alkali-activated high calcium fly ash paste. Case Studies in Construction Materials, 2021, 15, e00554.	0.8	6
272	Rice husk ash and fly ash geopolymer hollow block based on NaOH activated. Case Studies in Construction Materials, 2022, 16, e01092.	0.8	6
273	Strength enhancement of pumice-based geopolymer paste by incorporating recycled concrete and calcined oyster shell powders. Case Studies in Construction Materials, 2022, 17, e01307.	0.8	6
274	Factors Influence on Shrinkage of High Calcium Fly Ash Geopolymer Paste. Advanced Materials Research, 0, 610-613, 2275-2281.	0.3	5
275	Use of Recycled Concrete Aggregate in High-Calcium Fly Ash Geopolymer Concrete. Key Engineering Materials, 0, 718, 163-168.	0.4	5
276	Hydroxyapatite from Golden Apple Snail Shell with Calcined Kaolin for Biomaterial Applications. Key Engineering Materials, 2016, 718, 133-138.	0.4	5
277	Influence of Glass and Limestone Powders in High Calcium Fly Ash Geopolymer Paste on Compressive Strength and Microstructure. Key Engineering Materials, 0, 801, 397-403.	0.4	5
278	Anticipating of Potential Climate and Land Use Change Impacts on Floods: A Case Study of the Lower Nam Phong River Basin. Water (Switzerland), 2020, 12, 1158.	1.2	5
279	EFFECT OF SODIUM HYDROXIDE CONCENTRATION AND SODIUM SILICATE TO SODIUM HYDROXIDE RATIO ON PROPERTIES OF CALCINED KAOLIN-WHITE PORTLANDCEMENT GEOPOLYMER. International Journal of GEOMATE, 2018, 14, .	0.1	5
280	FLUIDIZED BED COAL-BARK FLY ASH GEOPOLYMER WITH ADDITIVES CURED AT AMBIENT TEMPERATURE. International Journal of GEOMATE, 2019, 16, .	0.1	5
281	Effect of curing temperature and time on the mechanical properties of hydroxyapatite/calcined kaolin. ScienceAsia, 2018, 44, 397.	0.2	5
282	COMPRESSIVE STRENGTH OF SOIL CEMENT BASE MIXED WITH FLY ASH – BASED GEOPOLYMER. International Journal of GEOMATE, 2018, 14, .	0.1	5
283	Strength, Elastic Modulus, and Creep of High-Strength Concrete Produced with Bagasse Ash and Recycled Concrete Aggregate. Journal of Testing and Evaluation, 2021, 49, 1173-1188.	0.4	5
284	Ohmic heating as an effective path to rapidly cure and strengthen alkali activated material. Construction and Building Materials, 2022, 322, 126425.	3.2	5
285	High flexural strength lightweight fly ash geopolymer mortar containing waste ï¬ber cement. Case Studies in Construction Materials, 2022, 16, e01121.	0.8	5
286	Synthesis of Faujasite and Analcime Using of Rice Husk Ash and Metakaolin. Advanced Materials Research, 0, 770, 209-212.	0.3	4
287	Thermal Degradation and Fire Retrandancy of Wood Impregnated with Nitrogen Phosphorus Flame Retardant. Advanced Materials Research, 0, 931-932, 152-156.	0.3	4
288	Properties of Geopolymer Paste from Fly Ash Blended with Metakaolin as Pervious Concrete. Key Engineering Materials, 0, 690, 179-186.	0.4	4

#	Article	IF	CITATIONS
289	Dielectric, ferroelectric, and piezoelectric properties of lead-free Ba _{0.95} Ca _{0.05} Ti _{1-x} Zr _x O ₃ ceramics. Integrated Ferroelectrics, 2019, 195, 70-80.	0.3	4
290	Influence of Nano-Silica Dosage on Properties of Cement Paste Incorporating with High Calcium Fly Ash. Key Engineering Materials, 0, 841, 9-13.	0.4	4
291	PROPERTIES OF LIGHTWEIGHT AERATED GEOPOLYMER SYNTHESIS FROM HIGH-CALCIUM FLY ASH AND ALUMINIUM POWDER. International Journal of GEOMATE, 2019, 16, .	0.1	4
292	Optimizing Mix Proportion of Lightweight Concrete Containing Plastic Waste by Taguchi Method. Advanced Materials Research, 2014, 931-932, 431-435.	0.3	3
293	Dielectric Properties of 0–3BCTZO/High Calcium Fly Ash Geopolymer Composites. Ferroelectrics, Letters Section, 2015, 42, 115-121.	0.4	3
294	The properties and durability ofÂhigh-pozzolanic industrial by-products content concrete masonry blocks. , 2015, , 191-214.		3
295	Effect of Porosity and Pore Size on Microstructures and Mechanical Properties of Metakaolin Blended with Ca(OH) ₂ and PLA as Porous Geopolymers. Key Engineering Materials, 0, 690, 276-281.	0.4	3
296	Investigation of hard-burn and soft-burn lime kiln dust as alternative materials for alkali-activated binder cured at ambient temperature. Journal of Materials Research and Technology, 2020, 9, 14933-14943.	2.6	3
297	Preliminary Investigation of Crushed Rock-Based Geopolymer for Road Applications. Key Engineering Materials, 0, 841, 161-165.	0.4	3
298	Probabilistic Seismic Hazard Assessment of North-Eastern Thailand. KSCE Journal of Civil Engineering, 2020, 24, 1845-1857.	0.9	3
299	The fabrication of calcium silicate-natural rubber composite for mechanical energy harvesting. Surfaces and Interfaces, 2021, 25, 101180.	1.5	3
300	DURABILITY OF CONCRETE CONTAINING RECYCLED ASPHALTIC CONCRETE AGGREGATE AND HIGH CALCIUM FLY ASH. International Journal of GEOMATE, 2020, 19, 8-14.	0.1	3
301	SHEAR BOND STRENGTH OF FA-PC GEOPOYLMER UNDER DIFFERENT SAND TO BINDER RATIOS AND SODIUM HYDROXIDE CONCENTRATIONS. International Journal of GEOMATE, 2018, 14, .	0.1	3
302	Assessment of equivalent substrate stiffness and mechanical properties of sustainable alkali-activated concrete containing recycled concrete aggregate. Case Studies in Construction Materials, 2022, 16, e00982.	0.8	3
303	Facile fabrication of green synthesized silver-decorated magnetic particles for coating of bioactive packaging. Cellulose, 2022, 29, 5853-5868.	2.4	3
304	Novel electromagnetic induction heat curing process of fly ash geopolymer using waste iron powder as a conductive material. Scientific Reports, 2022, 12, .	1.6	3
305	Bottom ash stabilized with cement and para rubber latex for road base applications. Case Studies in Construction Materials, 2022, 17, e01259.	0.8	3
306	Strength and water permeability of concrete containing various types of fly ashes and filler material. International Journal of Materials Research, 2012, 103, 1058-1064.	0.1	2

#	Article	IF	CITATIONS
307	Thermal Activation on Phase Formation of Alkaline Activated Kaolin Based System. Advanced Materials Research, 0, 770, 262-266.	0.3	2
308	Experimental and Modeling Studies on Thermal Conductivity of Cement Composites Containing Nanosilica. Advanced Materials Research, 0, 979, 119-123.	0.3	2
309	Investigation of Gamma Radiation Shielding of Concrete Containing Blast Furnace Slag Waste via Experimental and Calculation Methods. Key Engineering Materials, 2018, 765, 329-334.	0.4	2
310	Development of Thai Lignite Fly Ash and Metakaolin for Pervious Geopolymer Concrete. Key Engineering Materials, 0, 766, 294-299.	0.4	2
311	Crushed Rock Geopolymer as a Future Road Construction Material: An Evaluation on Strength Performance and Compaction Characteristics. Key Engineering Materials, 0, 841, 171-176.	0.4	2
312	Strength and Bioactivity of Hydroxyapatite/White Portland Cement (HAp/WPC) under Simulated Body Fluid (SBF) Solution. Materials Science Forum, 2020, 975, 88-93.	0.3	2
313	Significantly improved non-ohmic and giant dielectric response in CaCu3Ti4O12 ceramics by incorporating Portland cement. Materials Research Express, 2020, 7, 066301.	0.8	2
314	Development of alkali activated crushed rock for environmentally sustainable roadway rehabilitation. International Journal of Pavement Engineering, 2022, 23, 3255-3273.	2.2	2
315	Estimation of Sugar Content in Sugarcane (Saccharum spp.) Variety Lumpang 92-11 (LK 92-11) and Khon Kaen 3 (KK 3) by Near Infrared Spectroscopy. Engineering Journal, 2021, 25, 69-83.	0.5	2
316	A DFT study on electrocatalytic performance of 12CaO·7Al2O3 (C12A7) with electrolytic LiI applied in DSSCs. Surface Science, 2021, 711, 121864.	0.8	2
317	Corrosion-Induced Cracking Time in Steel Fiber-Reinforced Concrete: Experiment and Finite Element Method. ACI Materials Journal, 2020, 117, .	0.3	2
318	PORTLAND CEMENT CONTAINING FLY ASH, EXPANDED PERLITE, AND PLASTICIZER FOR MASONRY AND PLASTERING MORTARS. International Journal of GEOMATE, 2018, 15, .	0.1	2
319	HIGH CALCIUM FLY ASH GEOPOLYMER CONTAINING NATURAL RUBBER LATEX AS ADDITIVE. International Journal of GEOMATE, 2020, 18, .	0.1	2
320	Development of Biodegradable Films with Antioxidant Activity Using Pectin Extracted from Cissampelos pareira Leaves. Journal of Polymers and the Environment, 2022, 30, 2087-2098.	2.4	2
321	Case study of the application of pervious fly ash geopolymer concrete for neutralization of acidic wastewater. Case Studies in Construction Materials, 2021, 15, e00770.	0.8	2
322	Electrophoretic Deposition of Carbon Nanotubes onto Zinc Substrates for Electrode Applications. Sains Malaysiana, 2020, 49, 2811-2820.	0.3	2
323	Fire resistance of recycled aggregate alkali-activated concrete. , 2022, , 489-506.		2
324	Influences of the Ratios of High-Calcium Fly Ash to Low-Calcium Fly Ash on the Strength and Drying Shrinkage of Geopolymer Mortar. Advanced Materials Research, 0, 931-932, 416-420.	0.3	1

#	Article	IF	CITATIONS
325	The Study of Physical and Thermal Conductivity Properties of Cement Paste Containing Nanosilica. Key Engineering Materials, 2015, 659, 164-168.	0.4	1
326	Effects of Surface Hydrophobicity on Functionalization of Oleic Acid on <i>Bombyx mori</i> Silkworm Cocoons. Key Engineering Materials, 0, 718, 120-125.	0.4	1
327	Strength and Behaviour of Small-Scale Reinforced High Calcium Fly Ash Geopolymer Concrete Beam with Short Shear Span. Key Engineering Materials, 0, 718, 191-195.	0.4	1
328	Effect of synthesis temperature on the magneto-electrochemical properties of LaFe0.9Co0.1O3 nanoparticles. Journal of Alloys and Compounds, 2017, 708, 605-611.	2.8	1
329	Alternative Cementitious Materials and Their Composites. Advances in Materials Science and Engineering, 2018, 2018, 1-2.	1.0	1
330	Effect of Polypropylene Fiber on the Flexural Strength Properties of Lightweight Foam Mixed Soil. Advances in Materials Science and Engineering, 2019, 2019, 1-12.	1.0	1
331	Influence of Sodium Hydroxide Grade on the Strength of Fly Ash-Based Geopolymer Cement. Materials Science Forum, 2020, 998, 317-322.	0.3	1
332	Prediction of Compaction Parameters of Khon Kaen Loess Soil. Walailak Journal of Science and Technology, 2020, 17, 1367-1378.	0.5	1
333	Dielectric and Mechanical Properties of CTAB-Modified Natural Rubber Latex–Cement Composites. Polymers, 2022, 14, 320.	2.0	1
334	Flexibility-based stress-driven nonlocal frame element: formulation and applications. Engineering With Computers, 0, , 1.	3.5	1
335	Porosity enhancement of activated carbon by hydrolyzed lignin from black liquor. Clean Technologies and Environmental Policy, 0, , .	2.1	1
336	Engineering properties of marginal lateritic soil stabilized with one-part high calcium fly ash geopolymer as pavement materials. Case Studies in Construction Materials, 2022, , e01328.	0.8	1
337	The Effect of Fuel Type on Temperature Profile within Pilot-Scale Downdraft-Gasifier for the LPG Replacement in Electricity Production. Advanced Materials Research, 2014, 931-932, 1033-1037.	0.3	0
338	Physical Properties of Cement Mortar Containing Waste Ash. Applied Mechanics and Materials, 2015, 804, 129-132.	0.2	0
339	Preliminary Study of Pressed Lightweight Geopolymer Block Using Fly Ash, Portland Cement and Recycled Lightweight Concrete. Key Engineering Materials, 0, 718, 184-190.	0.4	0
340	Pre-Crack Behaviours of Cement Paste Containing <i>Bacillus pseudofirmus</i> ATCC 700159. Key Engineering Materials, 2019, 801, 371-376.	0.4	0
341	Investigation on Thermal Stability of Geopolymer Based Zeolite in Fire Case Study. Materials Science Forum, 0, 1009, 31-36.	0.3	0
342	The Water-Repellent Ability of Road Pavement Material Stabilized with Synthetic and Natural Polymers. Lecture Notes in Civil Engineering, 2022, , 701-712.	0.3	0

#	Article	IF	CITATIONS
343	FACTORS AFFECTING THE WORKABILITY AND STRENGTH OF ALKALI-ACTIVATED HIGH CALCIUM FLY ASH CONCRETE. Environmental Engineering and Management Journal, 2012, 11, 1425-1432.	0.2	Ο
344	Effect of curing temperature and time on the mechanical properties of hydroxyapatite/calcined kaolin. ScienceAsia, 2018, 44, 396.	0.2	0