
Yasuhiko Kondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7689659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relationship between infantile mother preference and neural regions activated by maternal contact in C57BL/6 mice. Neuroscience Research, 2022, 178, 69-77.	1.9	1
2	Why does castrated male odor attract sexually active male rats?–Attractivity induced by hypothalamus-pituitary-gonad axis block Physiology and Behavior, 2021, 230, 113288.	2.1	1
3	Neural and Hormonal Basis of Opposite-Sex Preference by Chemosensory Signals. International Journal of Molecular Sciences, 2021, 22, 8311.	4.1	11
4	Sexual Experience Induces the Expression of Gastrin-Releasing Peptide and Oxytocin Receptors in the Spinal Ejaculation Generator in Rats. International Journal of Molecular Sciences, 2021, 22, 10362.	4.1	3
5	Blunt olfaction in sexually sluggish male rats. Experimental Animals, 2020, 69, 441-447.	1.1	3
6	Oxytocin is indispensable for conspecific-odor preference and controls the initiation of female, but not male, sexual behavior in mice. Neuroscience Research, 2019, 148, 34-41.	1.9	8
7	Earlyâ€life exposure to Tris(1,3â€dichloroisopropyl) phosphate induces doseâ€dependent suppression of sexual behavior in male rats. Journal of Applied Toxicology, 2018, 38, 649-655.	2.8	8
8	VGF in the Medial Preoptic Nucleus Increases Sexual Activity Following Sexual Arousal Induction in Male Rats. Endocrinology, 2018, 159, 3993-4005.	2.8	8
9	Modulation of male mouse sociosexual and anxiety-like behaviors by vasopressin receptors. Physiology and Behavior, 2018, 197, 37-41.	2.1	6
10	Effects of neonatal 17α-ethinyloestradiol exposure on female-paced mating behaviour in the rat. Journal of Applied Toxicology, 2017, 37, 996-1003.	2.8	5
11	Vomeronasal signal deficiency enhances parental behavior in socially isolated male mice. Physiology and Behavior, 2017, 168, 98-102.	2.1	8
12	A Single Neonatal Injection of Ethinyl Estradiol Impairs Passive Avoidance Learning and Reduces Expression of Estrogen Receptor α in the Hippocampus and Cortex of Adult Female Rats. PLoS ONE, 2016, 11, e0146136.	2.5	14
13	Oxytocin mediates copulation-induced hypoalgesia of male rats. Neuroscience Letters, 2016, 618, 122-126.	2.1	5
14	Transient reversal of olfactory preference following castration in male rats: Implication for estrogen receptor involvement. Physiology and Behavior, 2015, 152, 161-167.	2.1	5
15	Social isolation prompts maternal behavior in sexually naÃ⁻ve male ddN mice. Physiology and Behavior, 2015, 151, 9-15.	2.1	7
16	An Enriched Rearing Environment Calms Adult Male Rat Sexual Activity: Implication for Distinct Serotonergic and Hormonal Responses to Females. PLoS ONE, 2014, 9, e87911.	2.5	14
17	Olfactory preference in the male rat depends on multiple chemosensory inputs converging on the preoptic area. Hormones and Behavior, 2011, 59, 193-199.	2.1	31
18	Both olfactory epithelial and vomeronasal inputs are essential for activation of the medial amygdala and preoptic neurons of male rats. Neuroscience, 2011, 199, 225-234.	2.3	33

ΥΑΣΗΙΚΟ ΚΟΝΟΟ

#	Article	IF	CITATIONS
19	Similar numbers of neurons are generated in the male and female rat preoptic area in utero. Neuroscience Research, 2010, 68, 9-14.	1.9	13
20	Maternal isobutyl-paraben exposure alters anxiety and passive avoidance test performance in adult male rats. Neuroscience Research, 2009, 65, 136-140.	1.9	25
21	Transient Transcription of the Somatostatin Gene at the Time of Estrogen-Dependent Organization of the Sexually Dimorphic Nucleus of the Rat Preoptic Area. Endocrinology, 2007, 148, 1144-1149.	2.8	23
22	The Medial Amygdala Controls Coital Access of Female Rats: A Possible Involvement of Emotional Responsiveness. The Japanese Journal of Physiology, 2005, 55, 345-53.	0.9	37
23	Differential Regulation of Female Rat Olfactory Preference and Copulatory Pacing by the Lateral Septum and Medial Preoptic Area. Neuroendocrinology, 2005, 81, 56-62.	2.5	50
24	Induction of Fos Immunoreactivity in Oxytocin Neurons in the Paraventricular Nucleus After Female Odor Exposure in Male Rats: Effects of Sexual Experience. Cellular and Molecular Neurobiology, 2004, 24, 283-291.	3.3	31
25	Sex-specific effects of gonadal steroids on conspecific odor preference in the rat. Hormones and Behavior, 2004, 46, 356-361.	2.1	63
26	Activation of accessory olfactory bulb neurons during copulatory behavior after deprivation of vomeronasal inputs in male rats. Brain Research, 2003, 962, 232-236.	2.2	35
27	Sexually dimorphic expression of estrogen receptor Î ² in the anteroventral periventricular nucleus of the rat preoptic area: Implication in luteinizing hormone surge. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3306-3311.	7.1	157
28	Disparate effects of small medial amygdala lesions on noncontact erection, copulation, and partner preference. Physiology and Behavior, 2002, 76, 443-447.	2.1	62
29	Electromyography of Male Rat Perineal Musculature during Copulatory Behavior. Urologia Internationalis, 2001, 67, 240-245.	1.3	11
30	Sensory requirements for noncontact penile erection in the rat Behavioral Neuroscience, 1999, 113, 1062-1070.	1.2	38
31	Temporal Coincidence between the Excitation of Ventromedial Hypothalamic Efferents and the Induction of Lordosis Reflex in Ovariectomized Estrogen-Primed Rats Endocrine Journal, 1998, 45, 519-528.	1.6	7
32	Effects of p-Chlorophenylalanine on Reflexive and Noncontact Penile Erections in Male Rats. Physiology and Behavior, 1997, 61, 165-168.	2.1	31
33	Importance of the medial amygdala in rat penile erection evoked by remote stimuli from estrous females. Behavioural Brain Research, 1997, 88, 153-160.	2.2	77
34	Functional association between the medial amygdala and the medial preoptic area in regulation of mating behavior in the male rat. Physiology and Behavior, 1995, 57, 69-73.	2.1	83
35	The possible involvement of the nonstrial pathway of the amygdala in neural control of sexual behavior in male rats. Brain Research Bulletin, 1995, 38, 37-40.	3.0	20
36	Facilitation of copulatory behavior by pCPA treatments following stria terminalis transection but not medial amygdala lesion in the male rat. Physiology and Behavior, 1994, 56, 603-608.	2.1	18

ΥΑΣΗΙΚΟ ΚΟΝΟΟ

#	Article	IF	CITATIONS
37	P-chlorophenylallanine Facilitates Copulatory Behavior in Septal Lesioned but not in Preoptic Lesioned Male Rats. Journal of Neuroendocrinology, 1993, 5, 629-633.	2.6	18
38	Functional relationships between mesencephalic central gray and septum in regulating lordosis in female rats: Effect of dual lesions. Brain Research Bulletin, 1993, 32, 635-638.	3.0	18
39	Lesions of the medial amygdala produce severe impairment of copulatory behavior in sexually inexperienced male rats. Physiology and Behavior, 1992, 51, 939-943.	2.1	150
40	Recovery of lordotic activity by dorsal deafferentation of the preoptic area in male and androgenized female rats. Physiology and Behavior, 1986, 37, 495-498.	2.1	20