Ronald W Armstrong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7689418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dislocationâ€mechanicsâ€based constitutive relations for material dynamics calculations. Journal of Applied Physics, 1987, 61, 1816-1825.	2.5	1,624
2	Plastic strain localization in metals: origins and consequences. Progress in Materials Science, 2014, 59, 1-160.	32.8	340
3	60 Years of Hall-Petch: Past to Present Nano-Scale Connections. Materials Transactions, 2014, 55, 2-12.	1.2	180
4	Description of tantalum deformation behavior by dislocation mechanics based constitutive relations. Journal of Applied Physics, 1990, 68, 1580-1591.	2.5	157
5	Dislocation mechanics of copper and iron in high rate deformation tests. Journal of Applied Physics, 2009, 105, .	2.5	90
6	Engineering science aspects of the Hall–Petch relation. Acta Mechanica, 2014, 225, 1013-1028.	2.1	72
7	The Hardness and Strength Properties of WC-Co Composites. Materials, 2011, 4, 1287-1308.	2.9	64
8	Dislocation Mechanics of High-Rate Deformations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4438-4453.	2.2	45
9	Hall-Petch analysis of dislocation pileups in thin material layers and in nanopolycrystals. Journal of Materials Research, 2013, 28, 1792-1798.	2.6	28
10	Dislocation Pile-Ups, Material Strength Levels, and Thermal Activation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5801-5810.	2.2	24
11	Indentation fracture mechanics toughness dependence on grain size and crack size: Application to alumina and WC–Co. International Journal of Refractory Metals and Hard Materials, 2006, 24, 129-134.	3.8	23
12	Dislocation pile-ups: From {110} cracking in MgO to model strength evaluations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 409, 24-31.	5.6	22
13	Material grain size and crack size influences on cleavage fracturing. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140124.	3.4	19
14	Size effects on material yield strength/deformation/fracturing properties. Journal of Materials Research, 2019, 34, 2161-2176.	2.6	19
15	Elastic/plastic/cracking indentation behavior of hard materials. International Journal of Refractory Metals and Hard Materials, 2006, 24, 11-16.	3.8	15
16	Elastic/plastic deformation behavior in a continuous ball indentation test. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 371, 251-255.	5.6	14
17	Crystal Engineering for Mechanical Strength at Nano-Scale Dimensions. Crystals, 2017, 7, 315.	2.2	13
18	Hall-Petch Basis for Assessing Alloy Strengthening. Materials Research Society Symposia Proceedings, 1994, 362, 41.	0.1	11

Ronald W Armstrong

#	Article	IF	CITATIONS
19	Constitutive relations for slip and twinning in high rate deformations: A review and update. Journal of Applied Physics, 2021, 130, .	2.5	11
20	Hall-Petch Analysis of Yield, Flow and Fracturing. Materials Research Society Symposia Proceedings, 1994, 362, 9.	0.1	9
21	Exceptional crystal strain hardening determined over macro- to micro- to nano-size scales in continuous spherical indentation tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 757, 95-100.	5.6	8
22	Influence of the strain rate on deformation mechanisms of an AZ31 magnesium alloy. International Journal of Materials Research, 2013, 104, 762-768.	0.3	7
23	Bertram Hopkinson's pioneering work and the dislocation mechanics of high rate deformations and mechanically induced detonations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130181.	3.4	7
24	Crystal Indentation Hardness. Crystals, 2017, 7, 21.	2.2	7
25	Dislocation Mechanics Pile-Up and Thermal Activation Roles in Metal Plasticity and Fracturing. Metals, 2019, 9, 154.	2.3	6
26	Dislocation Reaction Mechanism for Enhanced Strain Hardening in Crystal Nano-Indentations. Crystals, 2020, 10, 9.	2.2	6
27	Symmetry Aspects of Dislocation-Effected Crystal Properties: Material Strength Levels and X-ray Topographic Imaging. Symmetry, 2014, 6, 148-163.	2.2	4
28	Crystal Strengths at Micro- and Nano-Scale Dimensions. Crystals, 2020, 10, 88.	2.2	3
29	LM-ACT for Imaging RAM Devices in X-ray Diffraction Topographs. Advances in X-ray Analysis, 1988, 32, 659-666.	0.0	2
30	High-Rate Crystal/Polycrystal Dislocation Dynamics. Crystals, 2022, 12, 705.	2.2	2
31	Crystal Dislocations. Crystals, 2016, 6, 9.	2.2	1
32	Hallâ \in 'Petch Relationship in Aluminum and Aluminum Alloys. , 2019, , .		1
33	Norman J. Petch and his Contributions to Materials Science. Materials Research Society Symposia Proceedings, 1994, 362, 3.	0.1	0
34	Split-Hopkinson pressure bar tests on pure tantalum. , 1998, , .		0
35	Application of Eyring's thermal activation theory to constitutive equations for polymers. AlP Conference Proceedings, 2000, , .	0.4	0
36	Dislocation characteristics in energetic crystals. AIP Conference Proceedings, 2000, , .	0.4	0

IF

37	DISLOCATION MECHANICS UNDER EXTREME PRESSURES., 2008, , .

#

ARTICLE

CITATIONS