Sara J Fraserâ€miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7689213/publications.pdf

Version: 2024-02-01

		394421	5	501196
58	972	19		28
papers	citations	h-index		g-index
59	59	59		1197
39	39	39		1197
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Evaluation of crystallinity in carbon fiberâ€reinforced poly(ether ether ketone) by using infrared low frequency Raman spectroscopy. Journal of Applied Polymer Science, 2022, 139, 51677.	2.6	2
2	Detection of structural degradation of porcine bone in different marine environments with Raman spectroscopy combined with chemometrics. Journal of Raman Spectroscopy, 2022, 53, 82-94.	2.5	3
3	Optimization of methionine in inhalable High-dose Spray-dried amorphous composite particles using response surface Method, infrared and low frequency Raman spectroscopy. International Journal of Pharmaceutics, 2022, 614, 121446.	5. 2	3
4	Elucidating the Dehydration Mechanism of Nitrofurantoin Monohydrate II Using Low-Frequency Raman Spectroscopy. Crystal Growth and Design, 2022, 22, 2733-2741.	3.0	5
5	Low-versus Mid-frequency Raman Spectroscopy for <i>in Situ</i> Analysis of Crystallization in Slurries. Molecular Pharmaceutics, 2022, 19, 2316-2326.	4.6	3
6	Low-Frequency Raman Spectroscopy as an Avenue to Determine the Transition Temperature of \hat{l}^2 - and \hat{l}^3 -Relaxation in Pharmaceutical Glasses. Analytical Chemistry, 2022, 94, 8241-8248.	6.5	4
7	Rapid Quantitation of Adulterants in Premium Marine Oils by Raman and IR Spectroscopy: A Data Fusion Approach. Molecules, 2022, 27, 4534.	3.8	8
8	Rapid discrimination of intact beef, venison and lamb meat using Raman spectroscopy. Food Chemistry, 2021, 343, 128441.	8.2	31
9	Qualitative and quantitative vibrational spectroscopic analysis of macronutrients in breast milk. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 118982.	3.9	11
10	Recent advances in low-frequency Raman spectroscopy for pharmaceutical applications. International Journal of Pharmaceutics, 2021, 592, 120034.	5.2	48
11	Monitoring the Isothermal Dehydration of Crystalline Hydrates Using Low-Frequency Raman Spectroscopy. Molecular Pharmaceutics, 2021, 18, 1264-1276.	4.6	12
12	Combined Effect of the Preparation Method and Compression on the Physical Stability and Dissolution Behavior of Melt-Quenched Amorphous Celecoxib. Molecular Pharmaceutics, 2021, 18, 1408-1418.	4.6	6
13	A New Frontier for Nondestructive Spatial Analysis of Pharmaceutical Solid Dosage Forms: Spatially Offset Low-Frequency Raman Spectroscopy. Analytical Chemistry, 2021, 93, 3698-3705.	6.5	14
14	Biopharmaceutics of Topical Ophthalmic Suspensions: Importance of Viscosity and Particle Size in Ocular Absorption of Indomethacin. Pharmaceutics, 2021, 13, 452.	4.5	30
15	Raman and Infrared Spectroscopic Data Fusion Strategies for Rapid, Multicomponent Quantitation of Krill Oil Compositions. ACS Food Science & Technology, 2021, 1, 570-578.	2.7	10
16	Can Coupling Multiple Complementary Methods Improve the Spectroscopic Based Diagnosis of Gastrointestinal Illnesses? A Proof of Principle <i>Ex Vivo</i> Study Using Celiac Disease as the Model Illness. Analytical Chemistry, 2021, 93, 6363-6374.	6.5	6
17	Molecular monitoring of glioblastoma's immunogenicity using a combination of Raman spectroscopy and chemometrics. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119534.	3.9	10
18	Lake snow caused by the invasive diatom <i>Lindavia intermedia</i> can be discriminated from different sites and from other algae using vibrational spectroscopy. Journal of Raman Spectroscopy, 2021, 52, 2597-2608.	2.5	9

#	Article	IF	CITATIONS
19	Pseudo-3D Subsurface Imaging of Pharmaceutical Solid Dosage Forms Using Micro-spatially Offset Low-Frequency Raman Spectroscopy. Analytical Chemistry, 2021, 93, 8986-8993.	6.5	9
20	Investigation on Formulation Strategies to Mitigate Compression-Induced Destabilization in Supersaturated Celecoxib Amorphous Solid Dispersions. Molecular Pharmaceutics, 2021, 18, 3882-3893.	4.6	6
21	Evaluating low- mid- and high-level fusion strategies for combining Raman and infrared spectroscopy for quality assessment of red meat. Food Chemistry, 2021, 361, 130154.	8.2	24
22	Feeding the team: Analysis of a Spratt's dog cake from Antarctica. Polar Record, 2021, 57, .	0.8	0
23	Solving the Computational Puzzle: Toward a Pragmatic Pathway for Modeling Low-Energy Vibrational Modes of Pharmaceutical Crystals. Crystal Growth and Design, 2020, 20, 6947-6955.	3.0	21
24	Co-Amorphization of Kanamycin with Amino Acids Improves Aerosolization. Pharmaceutics, 2020, 12, 715.	4.5	12
25	Vibrational spectroscopy and chemometrics for quantifying key bioactive components of various plum cultivars grown in New Zealand. Journal of Raman Spectroscopy, 2020, 51, 1138-1152.	2.5	7
26	Understanding consolidants on harakeke fibres using Raman microscopy: Implications for conservation. Journal of Cultural Heritage, 2020, 45, 41-47.	3.3	3
27	Surface Stabilization and Dissolution Rate Improvement of Amorphous Compacts with Thin Polymer Coatings: Can We Have It All?. Molecular Pharmaceutics, 2020, 17, 1248-1260.	4.6	18
28	Low-Frequency Raman Scattering Spectroscopy as an Accessible Approach to Understand Drug Solubilization in Milk-Based Formulations during Digestion. Molecular Pharmaceutics, 2020, 17, 885-899.	4.6	19
29	Low-wavenumber Raman spectral database of pharmaceutical excipients. Vibrational Spectroscopy, 2020, 107, 103021.	2.2	14
30	Low-Frequency Raman Spectroscopic Study on Compression-Induced Destabilization in Melt-Quenched Amorphous Celecoxib. Molecular Pharmaceutics, 2019, 16, 3678-3686.	4.6	25
31	Application of lowâ€wavenumber Raman spectroscopy to the analysis of human teeth. Journal of Raman Spectroscopy, 2019, 50, 1375-1387.	2.5	20
32	Application of Low-Frequency Raman Scattering Spectroscopy to Probe in Situ Drug Solubilization in Milk during Digestion. Journal of Physical Chemistry Letters, 2019, 10, 2258-2263.	4.6	16
33	Tissueâ€specific study across the stem reveals the chemistry and transcriptome dynamics of birch bark. New Phytologist, 2019, 222, 1816-1831.	7.3	56
34	A comparison between laboratory and industrial fouling of reverse osmosis membranes used to concentrate milk. Food and Bioproducts Processing, 2019, 114, 113-121.	3.6	9
35	Cellâ€Nanoparticle Interactions at (Sub)–Nanometer Resolution Analyzed by Electron Microscopy and Correlative Coherent Antiâ€Stokes Raman Scattering. Biotechnology Journal, 2019, 14, 1800413.	3.5	5
36	Direct comparison of low- and mid-frequency Raman spectroscopy for quantitative solid-state pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 343-350.	2.8	37

#	Article	IF	Citations
37	Revisiting the Thermodynamic Stability of Indomethacin Polymorphs with Low-Frequency Vibrational Spectroscopy and Quantum Mechanical Simulations. Crystal Growth and Design, 2018, 18, 6513-6520.	3.0	33
38	Understanding Dissolution and Crystallization with Imaging: A Surface Point of View. Molecular Pharmaceutics, 2018, 15, 5361-5373.	4.6	24
39	Insights into Caco-2 cell culture structure using coherent anti-Stokes Raman scattering (CARS) microscopy. International Journal of Pharmaceutics, 2017, 523, 270-280.	5.2	5
40	Light-ageing characteristics of MÄøri textiles: Colour, strength and molecular change. Journal of Cultural Heritage, 2017, 24, 60-68.	3.3	14
41	Multimodal Nonlinear Optical Imaging for Sensitive Detection of Multiple Pharmaceutical Solid-State Forms and Surface Transformations. Analytical Chemistry, 2017, 89, 11460-11467.	6.5	20
42	Probing Pharmaceutical Mixtures during Milling: The Potency of Low-Frequency Raman Spectroscopy in Identifying Disorder. Molecular Pharmaceutics, 2017, 14, 4675-4684.	4.6	30
43	Physical Stability of Freeze-Dried Isomalt Diastereomer Mixtures. Pharmaceutical Research, 2016, 33, 1752-1768.	3.5	6
44	Microscopic and infrared spectroscopic comparison of the underwater adhesives produced by germlings of the brown seaweed species <i>Durvillaea antarctica</i> and <i>Hormosira banksii</i> Journal of the Royal Society Interface, 2016, 13, 20151083.	3.4	10
45	Vibrational Spectroscopic Imaging. Advances in Delivery Science and Technology, 2016, , 523-589.	0.4	5
46	Chemical and mechanical properties of snake fangs. Journal of Raman Spectroscopy, 2016, 47, 787-795.	2.5	10
47	Use of low-frequency Raman spectroscopy and chemometrics for the quantification of crystallinity in amorphous griseofulvin tablets. Vibrational Spectroscopy, 2015, 77, 10-16.	2.2	45
48	Raman imaging of drug delivery systems. Advanced Drug Delivery Reviews, 2015, 89, 21-41.	13.7	97
49	Application of Raman spectroscopy to distinguish adularia and sanidine in drill cuttings from the Ngatamariki Geothermal Field, New Zealand. New Zealand Journal of Geology, and Geophysics, 2015, 58, 66-77.	1.8	4
50	Analysing avian eggshell pigments with Raman spectroscopy. Journal of Experimental Biology, 2015, 218, 2670-4.	1.7	19
51	A Raman spectroscopic study of teeth affected with molar–incisor hypomineralisation. Journal of Raman Spectroscopy, 2015, 46, 202-210.	2.5	17
52	Raman spectroscopic characterisation of resin-infiltrated hypomineralised enamel. Analytical and Bioanalytical Chemistry, 2015, 407, 5661-5671.	3.7	18
53	Scanning Tunneling and Atomic Force Microscopy Evidence for Covalent and Noncovalent Interactions between Aryl Films and Highly Ordered Pyrolytic Graphite. Journal of Physical Chemistry C, 2014, 118, 5820-5826.	3.1	28
54	Elemental and chemical characterization of dolphin enamel and dentine using X-ray and Raman microanalyzes (Cetacea: Delphinoidea and Inioidea). Journal of Structural Biology, 2014, 185, 58-68.	2.8	20

#	Article	IF	CITATIONS
55	Simultaneous qualitative and quantitative analysis of counterfeit and unregistered medicines using Raman spectroscopy. Journal of Raman Spectroscopy, 2013, 44, 1172-1180.	2.5	22
56	Gallstones in $\langle scp \rangle N \langle scp \rangle ew \langle scp \rangle Z \langle scp \rangle ealand: composition, risk factors and ethnic differences. ANZ Journal of Surgery, 2013, 83, 575-580.$	0.7	15
57	Interaction of bioactive glass with clodronate. International Journal of Pharmaceutics, 2013, 452, 102-107.	5.2	11
58	Nondestructive Spatial Dehydration Analysis of Crystalline Hydrates in Pharmaceutical Solid Dosage Forms Using Spatially Offset Low-Frequency Raman Spectroscopy. Crystal Growth and Design, 0, , .	3.0	2