
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7688825/publications.pdf

Version: 2024-02-01

#	Article	IF	Citations
1	Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sensing of Environment, 2013, 135, 25-35.	4.6	305
2	Recent global decline in endorheic basin water storages. Nature Geoscience, 2018, 11, 926-932.	5.4	282
3	A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sensing of Environment, 2017, 189, 1-13.	4.6	240
4	Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes?. Water Resources Research, 2014, 50, 3170-3186.	1.7	206
5	Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sensing of Environment, 2016, 185, 129-141.	4.6	175
6	Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92, 26-37.	4.9	130
7	Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. Journal of Hydrology, 2014, 514, 131-144.	2.3	94
8	Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes. Journal of Hydrology, 2016, 540, 504-514.	2.3	80
9	Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas. Geomorphology, 2017, 280, 30-38.	1.1	80
10	Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000–13. Journal of Glaciology, 2017, 63, 273-287.	1.1	76
11	Global open-access DEM performances in Earth's most rugged region High Mountain Asia: A multi-level assessment. Geomorphology, 2019, 338, 16-26.	1.1	65
12	Long-term surface water changes and driving cause in Xiong'an, China: from dense Landsat time series images and synthetic analysis. Science Bulletin, 2018, 63, 708-716.	4.3	62
13	Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sensing of Environment, 2015, 168, 13-23.	4.6	60
14	Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis. Climatic Change, 2016, 135, 493-507.	1.7	60
15	A Global Assessment of Terrestrial Evapotranspiration Increase Due to Surface Water Area Change. Earth's Future, 2019, 7, 266-282.	2.4	60
16	Recent Changes in Land Water Storage and its Contribution to Sea Level Variations. Surveys in Geophysics, 2017, 38, 131-152.	2.1	59
17	GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations. Earth System Science Data, 2022, 14, 1869-1899.	3.7	58
18	Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. Science Bulletin, 2015, 60, 1287-1297.	4.3	56

#	Article	IF	CITATIONS
19	Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: From a climate perspective?. Global and Planetary Change, 2015, 124, 1-9.	1.6	56
20	Combined ICESat and CryoSat-2 Altimetry for Accessing Water Level Dynamics of Tibetan Lakes over 2003–2014. Water (Switzerland), 2015, 7, 4685-4700.	1.2	50
21	Interâ€annual changes of alpine inland lake water storage on the Tibetan Plateau: Detection and analysis by integrating satellite altimetry and optical imagery. Hydrological Processes, 2014, 28, 2411-2418.	1.1	49
22	Reconstruction of Time-Series MODIS LST in Central Qinghai-Tibet Plateau Using Geostatistical Approach. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 1602-1606.	1.4	47
23	Recent dynamics of alpine lakes on the endorheic Changtang Plateau from multi-mission satellite data. Journal of Hydrology, 2017, 552, 633-645.	2.3	47
24	China's inland water dynamics: The significance of water body types. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13876-13878.	3.3	42
25	Heterogeneous change patterns of water level for inland lakes in High Mountain Asia derived from multiâ€mission satellite altimetry. Hydrological Processes, 2015, 29, 2769-2781.	1.1	41
26	Estimating seasonal water budgets in global lakes by using multi-source remote sensing measurements. Journal of Hydrology, 2021, 593, 125781.	2.3	37
27	Centuryâ€Scale Reconstruction of Water Storage Changes of the Largest Lake in the Inner Mongolia Plateau Using a Machine Learning Approach. Water Resources Research, 2021, 57, e2020WR028831.	1.7	37
28	Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau. Remote Sensing of Environment, 2020, 242, 111777.	4.6	36
29	What drives the rapid water-level recovery of the largest lake (Qinghai Lake) of China over the past half century?. Journal of Hydrology, 2021, 593, 125921.	2.3	36
30	Refined estimation of lake water level and storage changes on the Tibetan Plateau from ICESat/ICESat-2. Catena, 2021, 200, 105177.	2.2	36
31	Large-scale mapping of gully-affected areas: An approach integrating Google Earth images and terrain skeleton information. Geomorphology, 2018, 314, 13-26.	1.1	32
32	Impact of amplified evaporation due to lake expansion on the water budget across the inner Tibetan Plateau. International Journal of Climatology, 2020, 40, 2091-2105.	1.5	24
33	Precipitation variability in High Mountain Asia from multiple datasets and implication for water balance analysis in large lake basins. Global and Planetary Change, 2016, 145, 20-29.	1.6	23
34	Remote Sensingâ€Based Modeling of the Bathymetry and Water Storage for Channelâ€Type Reservoirs Worldwide. Water Resources Research, 2020, 56, e2020WR027147.	1.7	23
35	Remote sensing estimation of catchment-scale reservoir water impoundment in the upper Yellow River and implications for river discharge alteration. Journal of Hydrology, 2020, 585, 124791.	2.3	23
36	Divergent Causes of Terrestrial Water Storage Decline Between Drylands and Humid Regions Globally. Geophysical Research Letters, 2021, 48, .	1.5	23

#	Article	IF	Citations
37	Automatic watershed delineation in the Tibetan endorheic basin: A lake-oriented approach based on digital elevation models. Geomorphology, 2020, 358, 107127.	1.1	22
38	Satellite Laser Altimetry Reveals a Net Water Mass Gain in Global Lakes With Spatial Heterogeneity in the Early 21st Century. Geophysical Research Letters, 2022, 49, .	1.5	22
39	Constraining the contribution of glacier mass balance to the Tibetan lake growth in the early 21st century. Remote Sensing of Environment, 2022, 268, 112779.	4.6	21
40	Ongoing Drainage Reorganization Driven by Rapid Lake Growths on the Tibetan Plateau. Geophysical Research Letters, 2021, 48, e2021GL095795.	1.5	21
41	Remote sensing estimation of the flood storage capacity of basin-scale lakes and reservoirs at high spatial and temporal resolutions. Science of the Total Environment, 2022, 807, 150772.	3.9	19
42	Water Residence Time and Temperature Drive the Dynamics of Dissolved Organic Matter in Alpine Lakes in the Tibetan Plateau. Global Biogeochemical Cycles, 2021, 35, e2020GB006908.	1.9	18
43	Monitoring global reservoirs using ICESat-2: Assessment on spatial coverage and application potential. Journal of Hydrology, 2022, 604, 127257.	2.3	16
44	Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site. Science of the Total Environment, 2022, 802, 149928.	3.9	14
45	Modeling lake bathymetry and water storage from DEM data constrained by limited underwater surveys. Journal of Hydrology, 2022, 604, 127260.	2.3	14
46	Recent Dramatic Variations of China's Two Largest Freshwater Lakes: Natural Process or Influenced by the Three Gorges Dam?. Environmental Science & Environmental Science & 2014, 48, 2086-2087.	4.6	13
47	Decadal Lake Volume Changes (2003–2020) and Driving Forces at a Global Scale. Remote Sensing, 2022, 14, 1032.	1.8	13
48	An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes. Sensors, 2019, 19, 4247.	2.1	12
49	Recent Abnormal Hydrologic Behavior of Tibetan Lakes Observed by Multi-Mission Altimeters. Remote Sensing, 2020, 12, 2986.	1.8	12
50	Identifying Emerging Reservoirs along Regulated Rivers Using Multi-Source Remote Sensing Observations. Remote Sensing, 2019, 11, 25.	1.8	11
51	Investigating different timescales of terrestrial water storage changes in the northeastern Tibetan Plateau. Journal of Hydrology, 2022, 608, 127608.	2.3	9
52	Centenary covariations of water salinity and storage of the largest lake of Northwest China reconstructed by machine learning. Journal of Hydrology, 2022, 612, 128095.	2.3	8
53	Regional assessment of the potential risks of rapid lake expansion impacting on the Tibetan human living environment. Environmental Earth Sciences, 2021, 80, 1.	1.3	7
54	Large-Scale Detection of the Tableland Areas and Erosion-Vulnerable Hotspots on the Chinese Loess Plateau. Remote Sensing, 2022, 14, 1946.	1.8	7

#	Article	IF	CITATIONS
55	Water depth and transparency drive the quantity and quality of organic matter in sediments of Alpine Lakes on the Tibetan Plateau. Limnology and Oceanography, 2022, 67, 1959-1975.	1.6	6
56	Lake Level Reconstructed From DEM-Based Virtual Station: Comparison of Multisource DEMs With Laser Altimetry and UAV-LiDAR Measurements. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	3
57	Refining and densifying the water inundation area and storage estimates of Poyang Lake by integrating Sentinel-1/2 and bathymetry data. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102601.	1.4	3
58	Remote Sensing Investigation of the Offset Effect between Reservoir Impoundment and Glacier Meltwater Supply in Tibetan Highland Catchment. Water (Switzerland), 2021, 13, 1307.	1.2	2
59	Remote sensing reconstruction of long-term water level and storage variations of a poorly-gauged river in the Tibetan Plateau. Journal of Hydrology: Regional Studies, 2022, 40, 101020.	1.0	2
60	Seasonal Amplitude of Water Storage Variations of the Yangtze–Huai Plain Lake Group: Implicaion for Floodwater Storage Capacity. Frontiers in Environmental Science, 2022, 10, .	1.5	1
61	A Low-Cost Approach for Lake Volume Estimation on the Tibetan Plateau: Coupling the Lake Hypsometric Curve and Bottom Elevation. Frontiers in Earth Science, 0, 10, .	0.8	0