Pawel K Misztal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7688691/publications.pdf Version: 2024-02-01

DANNEL K MISZTAL

#	Article	IF	CITATIONS
1	Aging of Volatile Organic Compounds in October 2017 Northern California Wildfire Plumes. Environmental Science & Technology, 2022, 56, 1557-1567.	4.6	9
2	High resolution chemical fingerprinting and real-time oxidation dynamics of asphalt binders using Vocus Proton Transfer Reaction (PTR-TOF) mass spectrometry. Fuel, 2022, 320, 123840.	3.4	8
3	Indoor emissions of total and fluorescent supermicron particles during HOMEChem. Indoor Air, 2021, 31, 88-98.	2.0	20
4	Physical–Chemical Coupling Model for Characterizing the Reaction of Ozone with Squalene in Realistic Indoor Environments. Environmental Science & Technology, 2021, 55, 1690-1698.	4.6	33
5	Observing ozone chemistry in an occupied residence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	63
6	Chemical composition of PM _{2.5} in October 2017 Northern California wildfire plumes. Atmospheric Chemistry and Physics, 2021, 21, 5719-5737.	1.9	23
7	Intake Fractions for Volatile Organic Compounds in Two Occupied California Residences. Environmental Science and Technology Letters, 2021, 8, 386-391.	3.9	5
8	High-Resolution Exposure Assessment for Volatile Organic Compounds in Two California Residences. Environmental Science & Technology, 2021, 55, 6740-6751.	4.6	33
9	Measurement of Volatile Compounds for Real-Time Analysis of Soil Microbial Metabolic Response to Simulated Snowmelt. Frontiers in Microbiology, 2021, 12, 679671.	1.5	5
10	Volatile organic compound emissions during HOMEChem. Indoor Air, 2021, 31, 2099-2117.	2.0	48
11	Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: chemical characterisation, source apportionment and new marker identification. Atmospheric Chemistry and Physics, 2021, 21, 10133-10158.	1.9	15
12	Varying humidity increases emission of volatile nitrogen-containing compounds from building materials. Building and Environment, 2021, 205, 108290.	3.0	5
13	Microbial growth and volatile organic compound (VOC) emissions from carpet and drywall under elevated relative humidity conditions. Microbiome, 2021, 9, 209.	4.9	7
14	Ecosystem fluxes during drought and recovery in an experimental forest. Science, 2021, 374, 1514-1518.	6.0	60
15	Ten questions concerning the implications of carpet on indoor chemistry and microbiology. Building and Environment, 2020, 170, 106589.	3.0	40
16	Decoding the social volatilome by tracking rapid context-dependent odour change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190259.	1.8	6
17	Contrasting Reactive Organic Carbon Observations in the Southeast United States (SOAS) and Southern California (CalNex). Environmental Science & amp; Technology, 2020, 54, 14923-14935.	4.6	15
18	Surface Emissions Modulate Indoor SVOC Concentrations through Volatility-Dependent Partitioning. Environmental Science & Technology, 2020, 54, 6751-6760.	4.6	43

#	Article	IF	CITATIONS
19	Natural and Anthropogenically Influenced Isoprene Oxidation in Southeastern United States and Central Amazon. Environmental Science & Technology, 2020, 54, 5980-5991.	4.6	22
20	Emission of biogenic volatile organic compounds from warm and oligotrophic seawater in the Eastern Mediterranean. Atmospheric Chemistry and Physics, 2020, 20, 12741-12759.	1.9	5
21	Modeling the Time-Dependent Concentrations of Primary and Secondary Reaction Products of Ozone with Squalene in a University Classroom. Environmental Science & amp; Technology, 2019, 53, 8262-8270.	4.6	35
22	Characterizing Airborne Phthalate Concentrations and Dynamics in a Normally Occupied Residence. Environmental Science & Technology, 2019, 53, 7337-7346.	4.6	49
23	Sources and dynamics of semivolatile organic compounds in a singleâ€family residence in northern California. Indoor Air, 2019, 29, 645-655.	2.0	53
24	Characterizing sources and emissions of volatile organic compounds in a northern California residence using space―and timeâ€resolved measurements. Indoor Air, 2019, 29, 630-644.	2.0	70
25	Heterogeneous Ozonolysis of Squalene: Gas-Phase Products Depend on Water Vapor Concentration. Environmental Science & Technology, 2019, 53, 14441-14448.	4.6	48
26	Chemical evolution of atmospheric organic carbon over multiple generations of oxidation. Nature Chemistry, 2018, 10, 462-468.	6.6	92
27	Detailed investigation of ventilation rates and airflow patterns in a northern California residence. Indoor Air, 2018, 28, 572-584.	2.0	50
28	Effects of temperature-dependent NO _{<i>x</i>} emissions on continental ozone production. Atmospheric Chemistry and Physics, 2018, 18, 2601-2614.	1.9	62
29	Fluorescent biological aerosol particles: Concentrations, emissions, and exposures in a northern California residence. Indoor Air, 2018, 28, 559-571.	2.0	22
30	Intercomparison of OH and OH reactivity measurements in a high isoprene and low NO environment during the Southern Oxidant and Aerosol Study (SOAS). Atmospheric Environment, 2018, 174, 227-236.	1.9	22
31	Measurement of NO ₃ and N ₂ O ₅ in a Residential Kitchen. Environmental Science and Technology Letters, 2018, 5, 595-599.	3.9	44
32	Emission Factors of Microbial Volatile Organic Compounds from Environmental Bacteria and Fungi. Environmental Science & Technology, 2018, 52, 8272-8282.	4.6	81
33	Ambient Measurements of Highly Oxidized Gas-Phase Molecules during the Southern Oxidant and Aerosol Study (SOAS) 2013. ACS Earth and Space Chemistry, 2018, 2, 653-672.	1.2	56
34	Predicting Indoor Emissions of Cyclic Volatile Methylsiloxanes from the Use of Personal Care Products by University Students. Environmental Science & Technology, 2018, 52, 14208-14215.	4.6	40
35	Comparative genomics of <i>Mortierella elongata</i> and its bacterial endosymbiont <i>Mycoavidus cysteinexigens</i> . Environmental Microbiology, 2017, 19, 2964-2983.	1.8	154
36	VOC emission rates over London and South East England obtained by airborne eddy covariance. Faraday Discussions, 2017, 200, 599-620.	1.6	23

#	Article	IF	CITATIONS
37	Alkoxy Radical Bond Scissions Explain the Anomalously Low Secondary Organic Aerosol and Organonitrate Yields From α-Pinene + NO ₃ . Journal of Physical Chemistry Letters, 2017, 8, 2826-2834.	2.1	50
38	Using advanced mass spectrometry techniques to fully characterize atmospheric organic carbon: current capabilities and remaining gaps. Faraday Discussions, 2017, 200, 579-598.	1.6	37
39	Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests. Science of the Total Environment, 2017, 595, 149-158.	3.9	18
40	On the implications of aerosol liquid water and phase separation for organic aerosol mass. Atmospheric Chemistry and Physics, 2017, 17, 343-369.	1.9	189
41	Microbes and associated soluble and volatile chemicals on periodically wet household surfaces. Microbiome, 2017, 5, 128.	4.9	45
42	Sensitive detection of <i>n</i> -alkanes using a mixed ionization mode proton-transfer-reaction mass spectrometer. Atmospheric Measurement Techniques, 2016, 9, 5315-5329.	1.2	26
43	Measuring Rapid Changes in Plant Volatiles at Different Spatial Levels. Signaling and Communication in Plants, 2016, , 95-114.	0.5	2
44	Volatile Organic Compound Emissions from Humans Indoors. Environmental Science & Technology, 2016, 50, 12686-12694.	4.6	193
45	Evaluation of regional isoprene emission factors and modeled fluxes in California. Atmospheric Chemistry and Physics, 2016, 16, 9611-9628.	1.9	16
46	Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC ⁴ RS) and ground-based (SOAS) observations in the Southeast US. Atmospheric Chemistry and Physics, 2016, 16, 5969-5991.	1.9	173
47	The lifetime of nitrogen oxides in an isoprene-dominated forest. Atmospheric Chemistry and Physics, 2016, 16, 7623-7637.	1.9	75
48	Understanding isoprene photooxidation using observations and modeling over a subtropical forest in the southeastern US. Atmospheric Chemistry and Physics, 2016, 16, 7725-7741.	1.9	26
49	Speciation of OH reactivity above the canopy of an isoprene-dominated forest. Atmospheric Chemistry and Physics, 2016, 16, 9349-9359.	1.9	59
50	Spatially resolved flux measurements of NO _x from London suggest significantly higher emissions than predicted by inventories. Faraday Discussions, 2016, 189, 455-472.	1.6	45
51	Observation of isoprene hydroxynitrates in the southeastern United States and implications for the fate of NO _{<i>x</i>} . Atmospheric Chemistry and Physics, 2015, 15, 11257-11272.	1.9	75
52	Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations. Geophysical Research Letters, 2015, 42, 8231-8240.	1.5	53
53	Atmospheric benzenoid emissions from plants rival those from fossil fuels. Scientific Reports, 2015, 5, 12064.	1.6	104
54	Siloxanes Are the Most Abundant Volatile Organic Compound Emitted from Engineering Students in a Classroom. Environmental Science and Technology Letters, 2015, 2, 303-307.	3.9	124

#	Article	IF	CITATIONS
55	Airborne flux measurements of biogenic isoprene over California. Atmospheric Chemistry and Physics, 2014, 14, 10631-10647.	1.9	42
56	Airborne Flux Measurements of BVOCs above Californian Oak Forests: Experimental Investigation of Surface and Entrainment Fluxes, OH Densities, and Damköhler Numbers. Journals of the Atmospheric Sciences, 2013, 70, 3277-3287.	0.6	49
57	Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model. Atmospheric Chemistry and Physics, 2013, 13, 10243-10269.	1.9	82
58	A global model study of the impact of land-use change in Borneo on atmospheric composition. Atmospheric Chemistry and Physics, 2013, 13, 9183-9194.	1.9	16
59	Reply to 'Circadian control of global isoprene emissions'. Nature Geoscience, 2012, 5, 435-436.	5.4	2
60	Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California. Journal of Geophysical Research, 2012, 117, .	3.3	50
61	Development of PTR-MS selectivity for structural isomers: Monoterpenes as a case study. International Journal of Mass Spectrometry, 2012, 310, 10-19.	0.7	37
62	The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: coastal processes, land-use change and air quality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3210-3224.	1.8	27
63	The influence of small-scale variations in isoprene concentrations on atmospheric chemistry over a tropical rainforest. Atmospheric Chemistry and Physics, 2011, 11, 4121-4134.	1.9	40
64	Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia. Atmospheric Chemistry and Physics, 2011, 11, 8995-9017.	1.9	82
65	The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3177-3195.	1.8	36
66	Effects of land use on surface–atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3196-3209.	1.8	78
67	Ground-level ozone influenced by circadian control of isoprene emissions. Nature Geoscience, 2011, 4, 671-674.	5.4	59
68	Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest. Atmospheric Chemistry and Physics, 2010, 10, 8391-8412.	1.9	119
69	NO _x and O ₃ above a tropical rainforest: an analysis with a global and box model. Atmospheric Chemistry and Physics, 2010, 10, 10607-10620.	1.9	32
70	Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools. Atmospheric Chemistry and Physics, 2010, 10, 169-199.	1.9	130
71	Simulating atmospheric composition over a South-East Asian tropical rainforest: performance of a chemistry box model. Atmospheric Chemistry and Physics, 2010, 10, 279-298.	1.9	132
72	Large estragole fluxes from oil palms in Borneo. Atmospheric Chemistry and Physics, 2010, 10, 4343-4358.	1.9	58

#	Article	IF	CITATIONS
73	Corrigendum to "Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools" published in Atmos. Chem. Phys., 10, 169–199, 2010. Atmospheric Chemistry and Physics, 2010, 10, 563-563.	1.9	5
74	Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in western Italy. Biogeosciences, 2009, 6, 1655-1670.	1.3	79
75	Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18447-18451.	3.3	161
76	Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment, 2009, 43, 5193-5267.	1.9	609
77	<title>The ytterbium-doped double-clad optical fiber for applications in fiber lasers</title> ., 2004, , .		0
78	Influence of double clad fibre shapes on their real active cross-sections. , 0, , .		0