
Christos D Dimitrakopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7688308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic Thin Film Transistors for Large Area Electronics. Advanced Materials, 2002, 14, 99-117.	11.1	4,693
2	100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science, 2010, 327, 662-662.	6.0	2,261
3	Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. Science, 1999, 286, 945-947.	6.0	1,839
4	Organic thin-film transistors: A review of recent advances. IBM Journal of Research and Development, 2001, 45, 11-27.	3.2	1,033
5	Low-Voltage Organic Transistors on Plastic Comprising High-Dielectric Constant Gate Insulators. Science, 1999, 283, 822-824.	6.0	866
6	Wafer-Scale Graphene Integrated Circuit. Science, 2011, 332, 1294-1297.	6.0	812
7	Graphene: synthesis and applications. Materials Today, 2012, 15, 86-97.	8.3	798
8	Molecular beam deposited thin films of pentacene for organic field effect transistor applications. Journal of Applied Physics, 1996, 80, 2501-2508.	1.1	660
9	N-type organic thin-film transistor with high field-effect mobility based on a N,Nâ€2-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Applied Physics Letters, 2002, 80, 2517-2519.	1.5	451
10	High-Performance, Solution-Processed Organic Thin Film Transistors from a Novel Pentacene Precursor. Journal of the American Chemical Society, 2002, 124, 8812-8813.	6.6	446
11	State-of-the-Art Graphene High-Frequency Electronics. Nano Letters, 2012, 12, 3062-3067.	4.5	371
12	Structurally Tailored Organicâ^'Inorganic Perovskites:Â Optical Properties and Solution-Processed Channel Materials for Thin-Film Transistors. Chemistry of Materials, 2001, 13, 3728-3740.	3.2	326
13	Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nature Communications, 2014, 5, 4836.	5.8	325
14	High-performance bottom electrode organic thin-film transistors. IEEE Transactions on Electron Devices, 2001, 48, 1060-1064.	1.6	286
15	Infrared Spectroscopy of Wafer-Scale Graphene. ACS Nano, 2011, 5, 9854-9860.	7.3	187
16	Reducing Contact Resistance in Graphene Devices through Contact Area Patterning. ACS Nano, 2013, 7, 3661-3667.	7.3	185
17	Field-effect transistors comprising molecular beam deposited α,ω-di-hexyl-hexathienylene and polymeric insulator. Synthetic Metals, 1998, 92, 47-52.	2.1	182
18	Layer-Resolved Graphene Transfer via Engineered Strain Layers. Science, 2013, 342, 833-836.	6.0	174

#	Article	IF	CITATIONS
19	Low-Voltage, High-Mobility Pentacene Transistors with Solution-Processed High Dielectric Constant Insulators. Advanced Materials, 1999, 11, 1372-1375.	11.1	157
20	Hybrid Field-Effect Transistor Based on a Low-Temperature Melt-Processed Channel Layer. Advanced Materials, 2002, 14, 1772-1776.	11.1	154
21	Three-Terminal Graphene Negative Differential Resistance Devices. ACS Nano, 2012, 6, 2610-2616.	7.3	153
22	Photosensitive Pentacene Precursor: Synthesis, Photothermal Patterning, and Application in Thin-Film Transistors. Advanced Materials, 2003, 15, 2066-2069.	11.1	104
23	Semiconducting Perovskites (2-XC6H4C2H4NH3)2SnI4(X = F, Cl, Br):Â Steric Interaction between the Organic and Inorganic Layers. Inorganic Chemistry, 2003, 42, 2031-2039.	1.9	104
24	Patterning pentacene organic thin film transistors. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 956.	1.6	97
25	Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 985-992.	0.6	95
26	Enhanced Performance in Epitaxial Graphene FETs With Optimized Channel Morphology. IEEE Electron Device Letters, 2011, 32, 1343-1345.	2.2	80
27	Epitaxial Graphene Nanoribbon Array Fabrication Using BCP-Assisted Nanolithography. ACS Nano, 2012, 6, 6786-6792.	7.3	68
28	Thermal Transport into Graphene through Nanoscopic Contacts. Physical Review Letters, 2013, 111, 205901.	2.9	67
29	Charge trapping and scattering in epitaxial graphene. Physical Review B, 2011, 84, .	1.1	62
30	Multicarrier transport in epitaxial multilayer graphene. Applied Physics Letters, 2010, 97, 112107.	1.5	50
31	Property modifications of nanoporous pSiCOH dielectrics to enhance resistance to plasma-induced damage. Journal of Applied Physics, 2008, 104, .	1.1	48
32	Graphene-based microfluidics for serial crystallography. Lab on A Chip, 2016, 16, 3082-3096.	3.1	48
33	Effect of SiC wafer miscut angle on the morphology and Hall mobility of epitaxially grown graphene. Applied Physics Letters, 2011, 98, .	1.5	37
34	trans-trans-2,5-Bis-[2-5-(2,2′-bithienyl)ethenyl]thiophene: synthesis, characterization, thin film deposition and fabrication of organic field-effect transistors. Synthetic Metals, 1997, 89, 193-197.	2.1	32
35	Near Surface Structure of Solvent-free Processed Polyimide Thin Film. Langmuir, 1996, 12, 2802-2806.	1.6	30
36	Fast Production of High-Quality Graphene via Sequential Liquid Exfoliation. ACS Applied Materials & Interfaces, 2015, 7, 27027-27030.	4.0	29

#	Article	IF	CITATIONS
37	N-Doped Zwitterionic Fullerenes as Interlayers in Organic and Perovskite Photovoltaic Devices. ACS Energy Letters, 2017, 2, 957-963.	8.8	29
38	Record high RF performance for epitaxial graphene transistors. , 2011, , .		25
39	RF performance of short channel graphene field-effect transistor. , 2010, , .		23
40	Impact of gate resistance in graphene radio frequency transistors. Applied Physics Letters, 2012, 101, .	1.5	21
41	A Kinetic Study of the Mechanism of the Solid-State Reaction between Pyromellitic Dianhydride (PMDA) and Oxydianiline (ODA). Macromolecules, 1996, 29, 5818-5825.	2.2	20
42	Current-driven nanowire formation on surfaces of crystalline conducting substrates. Applied Physics Letters, 2016, 108, 193109.	1.5	15
43	The Effect of Surface Preparation on the Structure and Electrical Transport in an Organic Semiconductor. Materials Research Society Symposia Proceedings, 2001, 665, 1.	0.1	14
44	Graphene RF Transistor Performance. ECS Transactions, 2010, 28, 3-13.	0.3	14
45	Multilayer epitaxial graphene formed by pyrolysis of polycrystalline silicon-carbide grown on c-plane sapphire substrates. Applied Physics Letters, 2011, 98, 132108.	1.5	13
46	A Graphene-Based Microfluidic Platform for Electrocrystallization and In Situ X-ray Diffraction. Crystals, 2018, 8, 76.	1.0	13
47	Layer Number Determination and Thickness-Dependent Properties of Graphene Grown on SiC. IEEE Nanotechnology Magazine, 2011, 10, 1196-1201.	1.1	12
48	Linearity of graphene field-effect transistors. Applied Physics Letters, 2013, 103, .	1.5	11
49	Growth Of Polyimide Films By Chemical Vapor Deposition And Their Characterization. Materials Research Society Symposia Proceedings, 1991, 227, 55.	0.1	10
50	Graphene-based fast electronics and optoelectronics. , 2010, , .		10
51	Scanning force microscopy of polyimide surfaces. Thin Solid Films, 1997, 295, 162-168.	0.8	8
52	Enhanced Quality CVD-Grown Graphene via a Double-Plateau Copper Surface Planarization Methodology. Crystal Growth and Design, 2017, 17, 5725-5731.	1.4	8
53	Recent advances in organic field effect transistors. Turkish Journal of Physics, 2014, 38, 497-508.	0.5	6
54	Growth of ODPA-APB polyimide films using molecular beam deposition, and their characterization. Polymer, 1995, 36, 4983-4990.	1.8	5

#	ARTICLE	IF	CITATIONS
55	Fabrication of an electrical spin transport device utilizing a diazonium salt/hafnium oxide interface layer on epitaxial graphene grown on 6 H-SiC(0001). Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 04E109.	0.6	5
56	Spray-Coated, Volatile and Nonvolatile, Two-Terminal, Resistive Switching Memory Devices Comprising Liquid-Exfoliated Black Phosphorus and Graphene Layers. IEEE Transactions on Electron Devices, 2020, 67, 5484-5489.	1.6	5
57	Monolayer CVD Graphene Barrier Enhances the Stability of Planar p–i–n Organic–Inorganic Metal Halide Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 52-60.	2.5	5
58	A robust molecular probe for Ãngstrom-scale analytics in liquids. Nature Communications, 2016, 7, 12403.	5.8	4
59	Development and optimization of porous pSiCOH interconnect dielectrics for 45 nm and beyond. , 2008, , .		3
60	Vertical thinking in blue light emitting diodes: GaN-on-graphene technology. Proceedings of SPIE, 2015, , .	0.8	3
61	Vacuum-Deposited Organic Thin-Film Field-Effect Transistors Based on Small Molecules. , 2003, , .		2
62	Graphene-based fast electronics and optoelectronics. , 2010, , .		2
63	Evaporation-Induced Self-Assembly of Semi-Crystalline PbI2(DMSO) Complex Films as a Facile Route to Reproducible and Efficient Planar p-i-n Perovskite Solar Cells. MRS Advances, 2018, 3, 1807-1817.	0.5	2
64	Electrical characterization of wafer-scale epitaxial graphene and its RF applications. , 2011, , .		1
65	Graphene technology for RF and THz applications. , 2013, , .		1
66	Effects of Environment on Modlus of Low-k Porous Films Used in Back End of Line. Materials Research Society Symposia Proceedings, 2007, 990, 1.	0.1	0
67	Using wafer-scale epitaxial graphene for producing twisted bilayers with controlled twist angle for electronics applications (Presentation Recording). Proceedings of SPIE, 2015, , .	0.8	0
68	A novel thin-film blue light emitting diode via GaN-on-graphene technology. , 2017, , .		0