
Shelli R Mcalpine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7687905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Delivering hydrophilic peptide inhibitors of heat shock protein 70 into cancer cells. Bioorganic Chemistry, 2022, 122, 105713.	2.0	1
2	Cyclic Peptides as Drugs for Intracellular Targets: The Next Frontier in Peptide Therapeutic Development. Chemistry - A European Journal, 2021, 27, 1487-1513.	1.7	91
3	Using NMR to identify binding regions for N and C-terminal Hsp90 inhibitors using Hsp90 domains. RSC Medicinal Chemistry, 2021, 12, 410-415.	1.7	4
4	De Novo Design, Synthesis, and Mechanistic Evaluation of Short Peptides That Mimic Heat Shock Protein 27 Activity. ACS Medicinal Chemistry Letters, 2021, 12, 713-719.	1.3	3
5	Frontispiece: Cyclic Peptides as Drugs for Intracellular Targets: The Next Frontier in Peptide Therapeutic Development. Chemistry - A European Journal, 2021, 27, .	1.7	0
6	Real time monitoring of peptide delivery <i>in vitro</i> using high payload pH responsive nanogels. Polymer Chemistry, 2020, 11, 425-432.	1.9	16
7	Protein–protein inhibitor designed <i>de novo</i> to target the MEEVD region on the C-terminus of Hsp90 and block co-chaperone activity. Chemical Communications, 2019, 55, 846-849.	2.2	17
8	Delivering bioactive cyclic peptides that target Hsp90 as prodrugs. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 728-739.	2.5	3
9	Nanoparticles for Bioapplications: Study of the Cytotoxicity of Water Dispersible CdSe(S) and CdSe(S)/ZnO Quantum Dots. Nanomaterials, 2019, 9, 465.	1.9	20
10	Polymer mediated transport of the Hsp90 inhibitor LB76, a polar cyclic peptide, produces an Hsp90 cellular phenotype. Chemical Communications, 2019, 55, 4515-4518.	2.2	5
11	Designing de Novo Small Molecules That Control Heat Shock Protein 70 (Hsp70) and Heat Shock Organizing Protein (HOP) within the Chaperone Protein-Folding Machinery. Journal of Medicinal Chemistry, 2019, 62, 742-761.	2.9	11
12	Functionalization of Quinazolinâ€4â€ones Part 3: Synthesis, Structures Elucidation, DNAâ€PK, PI3K, and Cytotoxicity of Novel 8â€Arylâ€2â€morpholinoâ€quinazolinâ€4â€ones. Journal of Heterocyclic Chemistry, 2019, 124-141.	56,4	1
13	C-Terminal HSP90 Inhibitors Block the HIF-1 Hypoxic Response by Degrading HIF-1α through the Oxygen-Dependent Degradation Pathway. Cellular Physiology and Biochemistry, 2019, 53, 480-495.	1.1	25
14	Improving the Cell Permeability of Polar Cyclic Peptides by Replacing Residues with Alkylated Amino Acids, Asparagines, and <scp>d</scp> -Amino Acids. Organic Letters, 2018, 20, 506-509.	2.4	31
15	Synthesis and Structure–Activity Relationships of Inhibitors That Target the C-Terminal MEEVD on Heat Shock Protein 90. ACS Medicinal Chemistry Letters, 2018, 9, 73-77.	1.3	20
16	Converting polar cyclic peptides into membrane permeable molecules using <i>N</i> â€methylation. Peptide Science, 2018, 110, e24063.	1.0	6
17	Hsp90 Mediates Membrane Deformation and Exosome Release. Molecular Cell, 2018, 71, 689-702.e9.	4.5	103
18	RITA Mimics: Synthesis and Mechanistic Evaluation of Asymmetric Linked Trithiazoles. ACS Medicinal Chemistry Letters, 2017, 8, 401-406.	1.3	8

SHELLI R MCALPINE

#	Article	IF	CITATIONS
19	How Selective are Hsp90 Inhibitors for Cancer Cells over Normal Cells?. ChemMedChem, 2017, 12, 353-357.	1.6	16
20	Redefining the Phenotype of Heat Shock Protein 90 (Hsp90) Inhibitors. Chemistry - A European Journal, 2017, 23, 2010-2013.	1.7	31
21	A Novel Class of Hsp90 C-Terminal Modulators Have Pre-Clinical Efficacy in Prostate Tumor Cells Without Induction of a Heat Shock Response. Prostate, 2016, 76, 1546-1559.	1.2	23
22	Reinventing Hsp90 Inhibitors: Blocking Câ€Terminal Binding Events to Hsp90 by Using Dimerized Inhibitors. Chemistry - A European Journal, 2016, 22, 18572-18582.	1.7	9
23	Hitting a Moving Target: How Does an <i>N</i> â€Methyl Group Impact Biological Activity?. ChemMedChem, 2016, 11, 881-892.	1.6	14
24	Hydrothermal synthesis of highly luminescent blue-emitting ZnSe(S) quantum dots exhibiting low toxicity. Materials Science and Engineering C, 2016, 64, 167-172.	3.8	30
25	Evaluating Dual Hsp90 and Hsp70 Inhibition as a Cancer Therapy. Topics in Medicinal Chemistry, 2015, , 55-80.	0.4	1
26	Thioimidazoline based compounds reverse glucocorticoid resistance in human acute lymphoblastic leukemia xenografts. Organic and Biomolecular Chemistry, 2015, 13, 6299-6312.	1.5	13
27	Heat Shock Protein 27: Structure, Function, Cellular Role and Inhibitors. Topics in Medicinal Chemistry, 2015, , 221-234.	0.4	2
28	Regulating the master regulator: Controlling heat shock factor 1 as a chemotherapy approach. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3409-3414.	1.0	21
29	Nuclear factor κB–inducing kinase activation as a mechanism of pancreatic β cell failure in obesity. Journal of Experimental Medicine, 2015, 212, 1239-1254.	4.2	52
30	Predicting the unpredictable: Recent structure–activity studies on peptide-based macrocycles. Bioorganic Chemistry, 2015, 60, 74-97.	2.0	15
31	Heat-shock protein 90 inhibitors: will they ever succeed as chemotherapeutics?. Future Medicinal Chemistry, 2015, 7, 87-90.	1.1	23
32	Synthesis of the Natural Product Marthiapeptide A. Organic Letters, 2015, 17, 5149-5151.	2.4	10
33	Blocking the heat shock response and depleting HSF-1 levels through heat shock protein 90 (hsp90) inhibition: a significant advance on current hsp90 chemotherapies. RSC Advances, 2015, 5, 59003-59013.	1.7	11
34	C-terminal heat shock protein 90 modulators produce desirable oncogenic properties. Organic and Biomolecular Chemistry, 2015, 13, 4627-4631.	1.5	24
35	Targeting the C-Terminus of Hsp90 as a Cancer Therapy. Topics in Medicinal Chemistry, 2015, , 1-20.	0.4	2
36	The fungal natural product (1S,3S)-austrocortirubin induces DNA damage in HCT116 cells via a mechanism unique from other DNA damaging agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 249-253.	1.0	10

SHELLI R MCALPINE

#	Article	IF	CITATIONS
37	Regulating the cytoprotective response in cancer cells using simultaneous inhibition of Hsp90 and Hsp70. Organic and Biomolecular Chemistry, 2015, 13, 2108-2116.	1.5	25
38	Design, synthesis and anticancer mechanistic studies of linked azoles. MedChemComm, 2015, 6, 300-305.	3.5	13
39	A heat shock protein 90 inhibitor that modulates the immunophilins and regulates hormone receptors without inducing the heat shock response. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 661-666.	1.0	54
40	Synthesis of macrocycles that inhibit protein synthesis: stereochemistry and structural based studies on sanguinamide B derivatives. Tetrahedron Letters, 2014, 55, 6979-6982.	0.7	6
41	Chemically Accessible Hsp90 Inhibitor That Does Not Induce a Heat Shock Response. ACS Medicinal Chemistry Letters, 2014, 5, 771-776.	1.3	40
42	Dimerization of a heat shock protein 90 inhibitor enhances inhibitory activity. Organic and Biomolecular Chemistry, 2014, 12, 765-773.	1.5	8
43	Sanguinamide B analogs: identification of active macrocyclic structures. Tetrahedron Letters, 2014, 55, 2389-2393.	0.7	11
44	Halting metastasis through CXCR4 inhibition. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 20-25.	1.0	62
45	Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1923-1928.	1.0	73
46	Effectively Delivering a Unique Hsp90 Inhibitor Using Star Polymers. ACS Medicinal Chemistry Letters, 2013, 4, 915-920.	1.3	25
47	Mechanistic Studies of Sanguinamide B Derivatives: A Unique Inhibitor of Eukaryotic Ribosomes. Organic Letters, 2013, 15, 4638-4641.	2.4	7
48	A potential rhodium cancer therapy: Studies of a cytotoxic organorhodium(I) complex that binds DNA. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2527-2531.	1.0	29
49	A structure–activity relationship study on multi-heterocyclic molecules: two linked thiazoles are required for cytotoxic activity. MedChemComm, 2013, 4, 406-410.	3.5	12
50	Solid Phase versus Solution Phase Synthesis of Heterocyclic Macrocycles. Molecules, 2013, 18, 1111-1121.	1.7	17
51	Total Synthesis and Biological Activity of Natural Product Urukthapelstatin A. Organic Letters, 2013, 15, 3574-3577.	2.4	18
52	Synthesis, Structure–Activity Analysis, and Biological Evaluation of Sanguinamide B Analogues. Journal of Organic Chemistry, 2012, 77, 10596-10616.	1.7	24
53	Total Synthesis of <i>trans</i> , <i>trans-</i> Sanguinamide B and Conformational Isomers. Organic Letters, 2012, 14, 1198-1201.	2.4	39
54	An Hsp90 modulator that exhibits a unique mechanistic profile. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3287-3290.	1.0	14

SHELLI R MCALPINE

#	Article	IF	CITATIONS
55	Synthesis of sansalvamide A peptidomimetics: triazole, oxazole, thiazole, and pseudoproline containing compounds. Tetrahedron, 2012, 68, 1029-1051.	1.0	71
56	Progress toward the synthesis of Urukthapelstatin A and two analogues. Tetrahedron Letters, 2012, 53, 4065-4069.	0.7	11
57	Macrocycles That Inhibit the Binding between Heat Shock Protein 90 and TPR-Containing Proteins. ACS Chemical Biology, 2011, 6, 1357-1366.	1.6	68
58	Synthesis and evaluation of biotinylated sansalvamide A analogs and their modulation of Hsp90. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4716-4719.	1.0	36
59	A small molecule that preferentially binds the closed conformation of Hsp90. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7068-7071.	1.0	14
60	Histone deacetylase inhibitors: synthesis of cyclic tetrapeptides and their triazole analogs. Tetrahedron Letters, 2010, 51, 4357-4360.	0.7	11
61	Design and synthesis of Hsp90 inhibitors: Exploring the SAR of Sansalvamide A derivatives. Bioorganic and Medicinal Chemistry, 2010, 18, 6822-6856.	1.4	73
62	Macrocyclic Inhibitors of Hsp90. Current Topics in Medicinal Chemistry, 2010, 10, 1380-1402.	1.0	39
63	Mechanistic Studies of Sansalvamide A-Amide: An Allosteric Modulator of Hsp90. ACS Medicinal Chemistry Letters, 2010, 1, 4-8.	1.3	97
64	A comprehensive study of Sansalvamide A derivatives: The structure–activity relationships of 78 derivatives in two pancreatic cancer cell lines. Bioorganic and Medicinal Chemistry, 2009, 17, 5806-5825.	1.4	43
65	Evaluation of Di-Sansalvamide A Derivatives: Synthesis, Structureâ^'Activity Relationship, and Mechanism of Action. Journal of Medicinal Chemistry, 2009, 52, 7927-7930.	2.9	20
66	Synthesis and biological evaluation of histone deacetylase inhibitors that are based on FR235222: A cyclic tetrapeptide scaffold. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2549-2554.	1.0	21
67	Comprehensive Study of Sansalvamide A Derivatives and their Structure–Activity Relationships against Drug-Resistant Colon Cancer Cell Lines. Journal of Medicinal Chemistry, 2008, 51, 530-544.	2.9	55
68	Synthesis and Cytotoxicity of a New Class of Potent Decapeptide Macrocycles. Organic Letters, 2008, 10, 177-180.	2.4	17
69	Scaffold Targeting Drug-Resistant Colon Cancers. Journal of Medicinal Chemistry, 2007, 50, 1999-2002.	2.9	23
70	Synthesis of Second-Generation Sansalvamide A Derivatives: Novel Templates as Potential Antitumor Agents. Journal of Organic Chemistry, 2007, 72, 1980-2002.	1.7	41
71	Identification of Sansalvamide a analog potent against pancreatic cancer cell lines. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5072-5077.	1.0	32
72	Synthesis and novel structure–activity relationships of potent sansalvamide A derivatives. Chemical Communications, 2006, , 1033.	2.2	25

#	Article	IF	CITATIONS
73	Synthesis of Sansalvamide A derivatives and their cytotoxicity in the MSS colon cancer cell line HT-29. Bioorganic and Medicinal Chemistry, 2006, 14, 5625-5631.	1.4	33
74	High-yielding macrocyclization conditions used in the synthesis of novel Sansalvamide A derivatives. Tetrahedron Letters, 2006, 47, 515-517.	0.7	26
75	Synthesis and Cytotoxicity of Novel Sansalvamide A Derivatives. Organic Letters, 2005, 7, 3481-3484.	2.4	34