
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7687867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Congenital deficiency reveals critical role of ISG15 in skin homeostasis. Journal of Clinical Investigation, 2022, 132, .	3.9	16
2	Generation of human induced pluripotent stem cell lines encoding for genetically encoded calcium indicators RCaMP1h and GCaMP6f. Stem Cell Research, 2022, 60, 102697.	0.3	0
3	Targeted biallelic integration of an inducible Caspase 9 suicide gene in iPSCs for safer therapies. Molecular Therapy - Methods and Clinical Development, 2022, 26, 84-94.	1.8	6
4	ISG15 deficiency features a complex cellular phenotype that responds to treatment with itaconate and derivatives. Clinical and Translational Medicine, 2022, 12, .	1.7	20
5	Generation of two human ISG15 knockout iPSC clones using CRISPR/Cas9 editing. Stem Cell Research, 2021, 50, 102135.	0.3	4
6	Production and cryopreservation of definitive endoderm from human pluripotent stem cells under defined and scalable culture conditions. Nature Protocols, 2021, 16, 1581-1599.	5.5	12
7	Human heart-forming organoids recapitulate early heart and foregut development. Nature Biotechnology, 2021, 39, 737-746.	9.4	196
8	High Density Bioprocessing of Human Pluripotent Stem Cells by Metabolic Control and in Silico Modeling. Stem Cells Translational Medicine, 2021, 10, 1063-1080.	1.6	47
9	An early cell shape transition drives evolutionary expansion of the human forebrain. Cell, 2021, 184, 2084-2102.e19.	13.5	139
10	Establishment of MHHi001-A-5, a GCaMP6f and RedStar dual reporter human iPSC line for in vitro and in vivo characterization and in situ tracing of iPSC derivatives. Stem Cell Research, 2021, 52, 102206.	0.3	3
11	Generation of two iPSC clones (MHHi021-A and MHHi021-B) from a patient with hypertrophic cardiomyopathy with p.Arg723Gly mutation in the MYH7 gene. Stem Cell Research, 2021, 52, 102208.	0.3	1
12	Reprogramming enriches for somatic cell clones with small-scale mutations in cancer-associated genes. Molecular Therapy, 2021, 29, 2535-2553.	3.7	9
13	Towards Biohybrid Lung: Induced Pluripotent Stem Cell Derived Endothelial Cells as Clinically Relevant Cell Source for Biologization. Micromachines, 2021, 12, 981.	1.4	7
14	Generation of pulmonary arterial hypertension patient-specific induced pluripotent stem cell lines from three unrelated patients with a heterozygous missense mutation in exon 12, a heterozygous in-frame deletion in exon 3 and a missense mutation in exon 11 of the BMPR2 gene. Stem Cell Research, 2021, 55, 102488.	0.3	5
15	iPSC culture expansion selects against putatively actionable mutations in the mitochondrial genome. Stem Cell Reports, 2021, 16, 2488-2502.	2.3	4
16	Targeting the Pentose Phosphate Pathway for SARS-CoV-2 Therapy. Metabolites, 2021, 11, 699.	1.3	25
17	A selectable all-in-one CRISPR prime editing piggyBac transposon allows for highly efficient gene editing in human cell lines. Scientific Reports, 2021, 11, 22154.	1.6	19
18	Generation of a NKX2.1 – p63 double transgenic knock-in reporter cell line from human induced pluripotent stem cells (MHHi006-A-4). Stem Cell Research, 2020, 42, 101659.	0.3	4

#	Article	IF	CITATIONS
19	Advanced Single-Cell Mapping Reveals that in hESC Cardiomyocytes Contraction Kinetics and Action Potential Are Independent of Myosin Isoform. Stem Cell Reports, 2020, 14, 788-802.	2.3	6
20	Dual Function of iPSC-Derived Pericyte-Like Cells in Vascularization and Fibrosis-Related Cardiac Tissue Remodeling In Vitro. International Journal of Molecular Sciences, 2020, 21, 8947.	1.8	14
21	Fgf10 Signaling-Based Evidence for the Existence of an Embryonic Stage Distinct From the Pseudoglandular Stage During Mouse Lung Development. Frontiers in Cell and Developmental Biology, 2020, 8, 576604.	1.8	8
22	Towards the Development of a Biohybrid Lung as Alternative to Lung Transplantation. Journal of Heart and Lung Transplantation, 2020, 39, S177-S178.	0.3	1
23	Generation of two hiPSC clones (MHHi019-A, MHHi019-B) from a primary ciliary dyskinesia patient carrying a homozygous deletion in the NME5 gene (c.415delA (p.lle139Tyrfs*8)). Stem Cell Research, 2020, 48, 101988.	0.3	7
24	In Vitro and In Vivo Interspecies Chimera Assay Using Early Pig Embryos. Cellular Reprogramming, 2020, 22, 118-133.	0.5	5
25	Generation of two hiPSC lines (MHHi016-A, MHHi016-B) from a primary ciliary dyskinesia patient carrying a homozygous 5Âbp duplication (c.248_252dup (p.Gly85Cysfs*11)) in exon 1 of the CCNO gene. Stem Cell Research, 2020, 46, 101850.	0.3	4
26	Generation of two human induced pluripotent stem cell lines (MHHi017-A, MHHi017-B) from a patient with primary ciliary dyskinesia carrying a homozygous mutation (c.7915CÂ>ÂT [p.Arg2639*]) in the DNAH5 gene. Stem Cell Research, 2020, 46, 101848.	0.3	4
27	Generation of three induced pluripotent stem cell lines (MHHi012-A, MHHi013-A, MHHi014-A) from a family with Loeys-Dietz syndrome carrying a heterozygous p.M253I (c.759G>A) mutation in the TGFBR1 gene. Stem Cell Research, 2020, 43, 101707.	0.3	4
28	Generation of an induced pluripotent stem cell line (MHHi018-A) from a patient with Cystic Fibrosis carrying p.Asn1303Lys (N1303K) mutation. Stem Cell Research, 2020, 44, 101744.	0.3	5
29	Targeted Integration of Inducible Caspase-9 in Human iPSCs Allows Efficient in vitro Clearance of iPSCs and iPSC-Macrophages. International Journal of Molecular Sciences, 2020, 21, 2481.	1.8	12
30	A gene therapeutic approach to inhibit calcium and integrin binding protein 1 ameliorates maladaptive remodelling in pressure overload. Cardiovascular Research, 2019, 115, 71-82.	1.8	16
31	Generation of a NKX2.1 knock-in reporter cell line from human induced pluripotent stem cells (MHHi006-A-2). Stem Cell Research, 2019, 39, 101492.	0.3	9
32	Continuous WNT Control Enables Advanced hPSC Cardiac Processing and Prognostic Surface Marker Identification in Chemically Defined Suspension Culture. Stem Cell Reports, 2019, 13, 366-379.	2.3	61
33	Generation of a CFTR knock-in reporter cell line (MHHi006-A-1) from a human induced pluripotent stem cell line. Stem Cell Research, 2019, 40, 101542.	0.3	1
34	High-Throughput Screening for Modulators of CFTR Activity Based on Genetically Engineered Cystic Fibrosis Disease-Specific iPSCs. Stem Cell Reports, 2019, 12, 1389-1403.	2.3	43
35	GMP-compatible manufacturing of three iPS cell lines from human peripheral blood. Stem Cell Research, 2019, 35, 101394.	0.3	19
36	Chemically-Defined, Xeno-Free, Scalable Production of hPSC-Derived Definitive Endoderm Aggregates with Multi-Lineage Differentiation Potential. Cells, 2019, 8, 1571.	1.8	19

#	Article	IF	CITATIONS
37	Prolonged myocardial protection during hypothermic storage: potential application for cardiac surgery and myocardial tissue engineering. Biomedical Physics and Engineering Express, 2018, 4, 035010.	0.6	2
38	Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture. Stem Cell Reports, 2018, 10, 1657-1672.	2.3	75
39	Solubilization and renaturation of biologically active human bone morphogenetic protein-4 from inclusion bodies. Biotechnology Reports (Amsterdam, Netherlands), 2018, 18, e00249.	2.1	3
40	Impaired IFNÎ ³ -Signaling and Mycobacterial Clearance in IFNÎ ³ R1-Deficient Human iPSC-Derived Macrophages. Stem Cell Reports, 2018, 10, 7-16.	2.3	25
41	Differential Expression of Cholinergic System Components in Human Induced Pluripotent Stem Cells, Bone Marrow-Derived Multipotent Stromal Cells, and Induced Pluripotent Stem Cell-Derived Multipotent Stromal Cells. Stem Cells and Development, 2018, 27, 166-183.	1.1	3
42	Gene editing & amp; stem cells. Journal of Cystic Fibrosis, 2018, 17, 10-16.	0.3	11
43	Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections. Nature Communications, 2018, 9, 5088.	5.8	105
44	Generation of a human CDX2 knock-in reporter iPSC line (MHHi007-A-1) to model human trophoblast differentiation. Stem Cell Research, 2018, 30, 117-121.	0.3	2
45	Human Embryonic Stem-Cell Derived Cardiomyocytes: Single-Cell Mapping to Relate Twitch Kinetics to Myosin Heavy Chain Protein and mRNA-Expression. Biophysical Journal, 2018, 114, 549a.	0.2	0
46	Human stem cells express pannexins. BMC Research Notes, 2018, 11, 54.	0.6	9
47	Anti-androgenic therapy with finasteride improves cardiac function, attenuates remodeling and reverts pathologic gene-expression after myocardial infarction in mice. Journal of Molecular and Cellular Cardiology, 2018, 122, 114-124.	0.9	14
48	Advanced Good Cell Culture Practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 353-378.	0.9	87
49	Functional effects of cannabinoids during dopaminergic specification of human neural precursors derived from induced pluripotent stem cells. Addiction Biology, 2017, 22, 1329-1342.	1.4	19
50	Multimodal Imaging for In Vivo Evaluation of Induced Pluripotent Stem Cells in a Murine Model of Heart Failure. Artificial Organs, 2017, 41, 192-199.	1.0	9
51	Generation of non-transgenic iPS cells from human cord blood CD34 + cells under animal component-free conditions. Stem Cell Research, 2017, 21, 71-73.	0.3	61
52	EBIO Does Not Induce Cardiomyogenesis in Human Pluripotent Stem Cells but Modulates Cardiac Subtype Enrichment by Lineage-Selective Survival. Stem Cell Reports, 2017, 8, 305-317.	2.3	15
53	Genome stability of programmed stem cell products. Advanced Drug Delivery Reviews, 2017, 120, 108-117.	6.6	19
54	Generation of a gene-corrected isogenic control iPSC line from cystic fibrosis patient-specific iPSCs homozygous for p.Phe508del mutation mediated by TALENs and ssODN. Stem Cell Research, 2017, 23, 95-97.	0.3	31

#	Article	IF	CITATIONS
55	Sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development. Scientific Reports, 2017, 7, 3950.	1.6	9
56	Ex vivo Generation of Genetically Modified Macrophages from Human Induced Pluripotent Stem Cells. Transfusion Medicine and Hemotherapy, 2017, 44, 135-142.	0.7	15
57	Targeted Gene Editing in Human Pluripotent Stem Cells Using Site-Specific Nucleases. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 169-186.	0.6	4
58	Therapeutic Application of Pluripotent Stem Cells: Challenges and Risks. Frontiers in Medicine, 2017, 4, 229.	1.2	64
59	Transplantation of purified iPSC-derived cardiomyocytes in myocardial infarction. PLoS ONE, 2017, 12, e0173222.	1.1	53
60	Differences in Contractile Function of Myofibrils within Human Embryonic Stem Cell-Derived Cardiomyocytes vs. Adult Ventricular Myofibrils Are Related to Distinct Sarcomeric Protein Isoforms. Frontiers in Physiology, 2017, 8, 1111.	1.3	36
61	Generation of HLA-Universal iPSC-Derived Megakaryocytes and Platelets for Survival Under Refractoriness Conditions. Molecular Medicine, 2016, 22, 274-285.	1.9	74
62	Site-Specific Genome Engineering in Human Pluripotent Stem Cells. International Journal of Molecular Sciences, 2016, 17, 1000.	1.8	17
63	Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nature Communications, 2016, 7, 13602.	5.8	105
64	234. Efficient Generation of Stable Genetically Modified Human iPSC-Derived Macrophages for Innovative Gene and Cell Therapeutic Strategies. Molecular Therapy, 2016, 24, S91.	3.7	0
65	Ultrastructural demonstration of Cx43 gap junctions in induced pluripotent stem cells from human cord blood. Histochemistry and Cell Biology, 2016, 146, 529-537.	0.8	14
66	Impact of Feeding Strategies on the Scalable Expansion of Human Pluripotent Stem Cells in Single-Use Stirred Tank Bioreactors. Stem Cells Translational Medicine, 2016, 5, 1289-1301.	1.6	110
67	Stiff matrix induces switch to pure β-cardiac myosin heavy chain expression in human ESC-derived cardiomyocytes. Basic Research in Cardiology, 2016, 111, 68.	2.5	59
68	Maturation Towards Pure Î ² -Myosin Protein Expression and Corresponding Functional Properties of Individual hESC-Cardiomyocytes. Biophysical Journal, 2016, 110, 294a.	0.2	0
69	Contractile Function of Permeabilized Human Embryonic Stem Cell-Derived Cardiomyocytes with Defined Myosin Protein Isoform Expression. Biophysical Journal, 2016, 110, 294a.	0.2	0
70	Targeted genome engineering using designer nucleases: State of the art and practical guidance for application in human pluripotent stem cells. Stem Cell Research, 2016, 16, 377-386.	0.3	21
71	Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nature Communications, 2016, 7, 10286.	5.8	113
72	101 TOWARDS OPTIMAL IN VITRO CULTURE CONDITIONS FOR PIG-MONKEY AGGREGATION CHIMERAS. Reproduction, Fertility and Development, 2016, 28, 180.	0.1	1

#	Article	IF	CITATIONS
73	Pluripotent stem cells for disease modeling and drug screening: new perspectives for treatment of cystic fibrosis?. Molecular and Cellular Pediatrics, 2015, 2, 15.	1.0	12
74	Striatal Transplantation of Human Dopaminergic Neurons Differentiated from Induced Pluripotent Stem Cells Derived from Umbilical Cord Blood Using Lentiviral Reprogramming. Cell Transplantation, 2015, 24, 2099-2112.	1.2	8
75	Transplantation Effectiveness of Induced Pluripotent Stem Cells Is Improved by a Fibrinogen Biomatrix in an Experimental Model of Ischemic Heart Failure. Tissue Engineering - Part A, 2015, 21, 1991-2000.	1.6	16
76	New Muscle for Old Hearts: Engineering Tissue from Pluripotent Stem Cells. Human Gene Therapy, 2015, 26, 305-311.	1.4	5
77	Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nature Protocols, 2015, 10, 1345-1361.	5.5	125
78	Bronchoalveolar Sublineage Specification of Pluripotent Stem Cells: Effect of Dexamethasone Plus cAMP-Elevating Agents and Keratinocyte Growth Factor. Tissue Engineering - Part A, 2015, 21, 669-682.	1.6	7
79	Gene Correction of Human Induced Pluripotent Stem Cells Repairs the Cellular Phenotype in Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 167-182.	2.5	85
80	Macroscopic Fluorescence Imaging: A Novel Technique to Monitor Retention and Distribution of Injected Microspheres in an Experimental Model of Ischemic Heart Failure. PLoS ONE, 2014, 9, e101775.	1.1	8
81	Controlling Expansion and Cardiomyogenic Differentiation of Human Pluripotent Stem Cells in Scalable Suspension Culture. Stem Cell Reports, 2014, 3, 1132-1146.	2.3	189
82	Substantial Early Loss of Induced Pluripotent Stem Cells Following Transplantation in Myocardial Infarction. Artificial Organs, 2014, 38, 978-984.	1.0	21
83	Primate iPS cells as tools for evolutionary analyses. Stem Cell Research, 2014, 12, 622-629.	0.3	61
84	Engineering cardiac muscle: new ways to refurbish old hearts?. European Journal of Cardio-thoracic Surgery, 2014, 45, 216-219.	0.6	7
85	Fast and Efficient Multitransgenic Modification of Human Pluripotent Stem Cells. Human Gene Therapy Methods, 2014, 25, 136-153.	2.1	17
86	Your Heart on a Chip: iPSC-Based Modeling of Barth-Syndrome-Associated Cardiomyopathy. Cell Stem Cell, 2014, 15, 9-11.	5.2	15
87	Molecular and Functional Analyses of Motor Neurons Generated from Human Cord-Blood-Derived Induced Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 3011-3020.	1.1	20
88	Efficient Designer Nuclease-Based Homologous Recombination Enables Direct PCR Screening for Footprintless Targeted Human Pluripotent StemÂCells. Stem Cell Reports, 2014, 2, 107-118.	2.3	34
89	CFTR functional measurements in human models for diagnosis, prognosis and personalized therapy. Journal of Cystic Fibrosis, 2014, 13, 363-372.	0.3	34
90	Functional differentiation of midbrain neurons from human cord blood-derived induced pluripotent stem cells. Stem Cell Research and Therapy, 2014, 5, 35.	2.4	29

#	Article	IF	CITATIONS
91	Induced Pluripotent Stem Cells Differentiate into Functional Cardiomyocytes. Stem Cells and Cancer Stem Cells, 2014, , 47-62.	0.1	1
92	Directing Cardiomyogenic Differentiation of Human Pluripotent Stem Cells by Plasmid-Based Transient Overexpression of Cardiac Transcription Factors. Stem Cells and Development, 2013, 22, 1112-1125.	1.1	34
93	Keratinocyte Growth Factor and Dexamethasone Plus Elevated cAMP Levels Synergistically Support Pluripotent Stem Cell Differentiation into Alveolar Epithelial Type II Cells. Tissue Engineering - Part A, 2013, 19, 938-951.	1.6	23
94	Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. European Heart Journal, 2013, 34, 1134-1146.	1.0	180
95	Reconsidering pluripotency tests: Do we still need teratoma assays?. Stem Cell Research, 2013, 11, 552-562.	0.3	76
96	The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials, 2013, 34, 2463-2471.	5.7	131
97	Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials, 2013, 34, 940-951.	5.7	180
98	Derivation and Characterization of <i>Sleeping Beauty</i> Transposon-Mediated Porcine Induced Pluripotent Stem Cells. Stem Cells and Development, 2013, 22, 124-135.	1.1	76
99	Higher frequencies of BCRP+ cardiac resident cells in ischaemic human myocardium. European Heart Journal, 2013, 34, 2830-2838.	1.0	36
100	051 * CD133 POSITIVE BONE MARROW-DERIVED STEM CELLS ARE LOST WITHIN MINUTES AFTER INTRAMYOCARDIAL INJECTION. Interactive Cardiovascular and Thoracic Surgery, 2013, 17, S81-S81.	0.5	0
101	Induction of Pluripotent Stem Cells from a Cynomolgus Monkey Using a Polycistronic Simian Immunodeficiency Virus–Based Vector, Differentiation Toward Functional Cardiomyocytes, and Generation of Stably Expressing Reporter Lines. Cellular Reprogramming, 2012, 14, 471-484.	0.5	20
102	Suspension Culture of Human Pluripotent Stem Cells in Controlled, Stirred Bioreactors. Tissue Engineering - Part C: Methods, 2012, 18, 772-784.	1.1	172
103	Cardiac quadruple-fusion imaging: A brief report on a novel integrated multimodality approach for in vivo visualization of transplanted stem cells. International Journal of Cardiology, 2012, 161, 62-63.	0.8	9
104	Cytokine production using membrane adsorbers: Human basic fibroblast growth factor produced by <i>Escherichia coli</i> . Engineering in Life Sciences, 2012, 12, 29-38.	2.0	25
105	Transplantation and Tracking of Human-Induced Pluripotent Stem Cells in a Pig Model of Myocardial Infarction. Circulation, 2012, 126, 430-439.	1.6	170
106	A Comparative Study of Suspension Cultivation Systems for the Expansion of Undifferentiated Mouse Embryonic Stem Cells. , 2012, , 219-222.		0
107	Induced Pluripotent Stem Cells from Blood. , 2012, , 87-95.		0
108	Rhesus monkey cardiosphere-derived cells for myocardial restoration. Cytotherapy, 2011, 13, 864-872.	0.3	13

ULRICH MARTIN

#	Article	IF	CITATIONS
109	A practical synthesis of Rho-Kinase inhibitor Y-27632 and fluoro derivatives and their evaluation in human pluripotent stem cells. Organic and Biomolecular Chemistry, 2011, 9, 5503.	1.5	20
110	Two-photon induced collagen cross-linking in bioartificial cardiac tissue. Optics Express, 2011, 19, 15996.	1.7	24
111	65 Magnetic Resonance Imaging and Bioluminescence Signal Assessment for Evaluation of Biodistribution, Vitality and Proliferation of Induced Pluripotent Stem Cells (iPS) Following Transplantation in Heart Failure. Journal of Heart and Lung Transplantation, 2011, 30, S29.	0.3	Ο
112	234 Cardiac Transplantation Efficiency of Induced Pluripotent Stem Cells (iPS) Is Improved by a Fibrinogen Matrix in an Experimental Model of Ischemic Heart Failure. Journal of Heart and Lung Transplantation, 2011, 30, S84.	0.3	1
113	Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. European Heart Journal, 2011, 32, 2634-2641.	1.0	147
114	Scalable expansion of human pluripotent stem cells in suspension culture. Nature Protocols, 2011, 6, 689-700.	5.5	240
115	A Novel Miniaturized Multimodal Bioreactor for Continuous <i>In Situ</i> Assessment of Bioartificial Cardiac Tissue During Stimulation and Maturation. Tissue Engineering - Part C: Methods, 2011, 17, 463-473.	1.1	97
116	MicroRNA-24 Regulates Vascularity After Myocardial Infarction. Circulation, 2011, 124, 720-730.	1.6	358
117	Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Research, 2010, 5, 51-64.	0.3	158
118	Reduced Thrombocyte Adhesion to Endothelialized Poly 4-Methyl-1-Pentene Gas Exchange Membranes—A First Step Toward Bioartificial Lung Development. Tissue Engineering - Part A, 2010, 16, 3043-3053.	1.6	41
119	Preparation of bioactive soluble human leukemia inhibitory factor from recombinant Escherichia coli using thioredoxin as fusion partner. Protein Expression and Purification, 2010, 73, 51-57.	0.6	28
120	Induced Pluripotent Stem Cells: Characteristics and Perspectives. , 2010, 123, 107-126.		9
121	Differentiation of murine embryonic stem cells (mESCs) and murine induced pluripotent stem cells (miPSCs) into Clara cells via enhanced definitive endoderm formation. Journal of Stem Cells and Regenerative Medicine, 2010, 6, 94.	2.2	1
122	Expansion and differentiation of human iPS and ES cells in stirred tank bioreactors. Journal of Stem Cells and Regenerative Medicine, 2010, 6, 119.	2.2	2
123	c-Kit Function Is Necessary for In Vitro Myogenic Differentiation of Bone Marrow Hematopoietic Cells. Stem Cells, 2009, 27, 1911-1920.	1.4	28
124	Transdifferentiation of Stem Cells: A Critical View. , 2009, 114, 73-106.		13
125	Generation of Induced Pluripotent Stem Cells from Human Cord Blood. Cell Stem Cell, 2009, 5, 434-441.	5.2	450
126	Human CMV immediateâ€early enhancer: a useful tool to enhance cellâ€ŧypeâ€specific expression from lentiviral vectors. Journal of Gene Medicine, 2008, 10, 21-32.	1.4	50

#	Article	IF	CITATIONS
127	359: A Novel Bioreactor for Miniaturized Bioartificial Cardiac Tissue Engineering. Journal of Heart and Lung Transplantation, 2008, 27, S190-S191.	0.3	0
128	Methods for studying stem cells: Adult stem cells for lung repair. Methods, 2008, 45, 121-132.	1.9	17
129	Generation of Functional Murine Cardiac Myocytes From Induced Pluripotent Stem Cells. Circulation, 2008, 118, 507-517.	1.6	464
130	Transplanted human cord blood-derived unrestricted somatic stem cells improve left-ventricular function and prevent left-ventricular dilation and scar formation after acute myocardial infarction. Heart, 2008, 95, 27-35.	1.2	55
131	Serum-Free Differentiation of Murine Embryonic Stem Cells into Alveolar Type II Epithelial Cells. Cloning and Stem Cells, 2008, 10, 49-64A-C.	2.6	35
132	Type II Pneumocyte-Restricted Green Fluorescent Protein Expression After Lentiviral Transduction of Lung Epithelial Cells. Human Gene Therapy, 2008, 19, 39-52.	1.4	11
133	Enrichment of cardiac pacemaker-like cells: neuregulin-1 and cyclic AMP increase I f-current density and connexin 40 mRNA levels in fetal cardiomyocytes. Medical and Biological Engineering and Computing, 2007, 45, 221-227.	1.6	16
134	Derivation of trophoectodermal cells from rhesus monkey embryonic stem cells. Journal of Stem Cells and Regenerative Medicine, 2007, 2, 79-80.	2.2	0
135	A completely serum-free differentiation protocol facilitates the search for key factors which enhance the generation of alveolar type-2 epithelial cells from murine embryonic stem cells. Journal of Stem Cells and Regenerative Medicine, 2007, 2, 127.	2.2	0
136	In Vivo Echocardiographic Imaging of Transplanted Human Adult Stem Cells in the Myocardium Labeled with Clinically Applicable CliniMACS Nanoparticles. Journal of the American Society of Echocardiography, 2006, 19, 563-568.	1.2	28
137	Generation and Characterization of Functional Cardiomyocytes from Rhesus Monkey Embryonic Stem Cells. Stem Cells, 2006, 24, 1423-1432.	1.4	29
138	Clinically Applicable 7-Tesla Magnetic Resonance Visualization of Transplanted Human Adult Stem Cells Labeled with CliniMACS® Nanoparticles. Thoracic and Cardiovascular Surgeon, 2006, 54, 447-451.	0.4	20
139	Apoptosis Repressor With Caspase Recruitment Domain Is Required for Cardioprotection in Response to Biomechanical and Ischemic Stress. Circulation, 2006, 113, 1203-1212.	1.6	109
140	Pravastatin prolongs graft survival in an allogeneic rat model of orthotopic single lung transplantationâ~†. European Journal of Cardio-thoracic Surgery, 2006, 30, 515-524.	0.6	13
141	No Evidence of Transdifferentiation of Human Endothelial Progenitor Cells Into Cardiomyocytes After Coculture With Neonatal Rat Cardiomyocytes. Circulation, 2006, 113, 1326-1334.	1.6	95
142	Isolation of Bovine Cardiomyocytes for Reprogramming Studies Based on Nuclear Transfer. Cloning and Stem Cells, 2006, 8, 150-158.	2.6	3
143	Analysis of pig-to-human porcine endogenous retrovirus transmission in a triple-species kidney xenotransplantation model. Transplant International, 2005, 17, 848-858.	0.8	23
144	No Evidence for Infection of Human Embryonic Stem Cells by Feeder Cell-Derived Murine Leukemia Viruses. Stem Cells, 2005, 23, 761-771.	1.4	32

ULRICH MARTIN

#	Article	IF	CITATIONS
145	Adhesive functions of both chains of VLA-integrins are not fully conserved across the human-porcine species barrier: implications for xenotransplantation. Xenotransplantation, 2005, 12, 473-480.	1.6	2
146	Shuttle of lentiviral vectors via transplanted cells in vivo. Gene Therapy, 2005, 12, 67-74.	2.3	29
147	Intra-vital Fluorescence Microscopy for Intra-myocardial Graft Detection Following Cell Transplantation. International Journal of Cardiovascular Imaging, 2005, 21, 569-574.	0.7	6
148	Shuttle system allowing simplified cloning of expression cassettes into advanced generation lentiviral vectors. BioTechniques, 2005, 38, 530-534.	0.8	4
149	No evidence for cardiac differentiation of human endothelial progenitor cells after coculture with neonatal rat cardiomyocytes. Journal of Heart and Lung Transplantation, 2005, 24, S94-S95.	0.3	1
150	Analysis of pig-to-human porcine endogenous retrovirus transmission in a triple-species kidney xenotransplantation model. Transplant International, 2004, 17, 848-858.	0.8	1
151	In vitro engineering of heart muscle: Artificial myocardial tissue. Journal of Thoracic and Cardiovascular Surgery, 2002, 124, 63-69.	0.4	128
152	Pig endogenous retroviruses and xenotransplantation. Xenotransplantation, 2002, 9, 242-251.	1.6	99
153	Absence of PERV specific humoral immune response in baboons after transplantation of porcine cells or organs. Transplant International, 2002, 15, 361-368.	0.8	24
154	Absence of PERV specific humoral immune response in baboons after transplantation of porcine cells or organs. Transplant International, 2002, 15, 361-8.	0.8	8
155	Long-term monitoring of xenotransplanted baboons: no evidence for pig endogenous retrovirus transmission. Transplantation Proceedings, 2001, 33, 692.	0.3	3
156	Induction of long-term chimerism in a pig-to-primate model of peripheral tolerance induction. Transplantation Proceedings, 2001, 33, 705.	0.3	0
157	Discordant lung xenotransplantation using alpha-GAL columns, pig-kidney adsorption, and complement depletion in baboons. Transplantation Proceedings, 2001, 33, 738-739.	0.3	2
158	In vivo differentiation of human lymphocytes in a porcine microenvironment. Transplantation Proceedings, 2001, 33, 792.	0.3	0
159	Analysis of potential porcine endogenous retrovirus (PERV) transmission in a whole-organ xenotransplantation model without interfering microchimerism. Transplant International, 2001, 14, 31-37.	0.8	34
160	Analysis of potential porcine endogenous retrovirus (PERV) transmission in a whole-organ xenotransplantation model without interfering microchimerism. Transplant International, 2001, 14, 31-37.	0.8	2
161	Productive infection of primary human endothelial cells by pig endogenous retrovirus (PERV). Xenotransplantation, 2000, 7, 138-142.	1.6	137
162	Infection of Nonhuman Primate Cells by Pig Endogenous Retrovirus. Journal of Virology, 2000, 74, 7687-7690.	1.5	71

#	Article	IF	CITATIONS
163	Development of a donor-specific, automated, and cost-effective cytotoxicity assay for human serum on primary porcine cells. Transplantation Proceedings, 2000, 32, 867-868.	0.3	3
164	Comparison of immunoadsorption by GAL-α 1,3- Gal-paa disaccharide columns and by extracorporeal kidney perfusion in the setting of discordant xenogeneic lung transplantation. Transplantation Proceedings, 2000, 32, 879-881.	0.3	4
165	In vitro differentiation of human lymphocytes in a porcine microenvironment: implication for xenogeneic organ transplantation. Transplantation Proceedings, 2000, 32, 1043-1044.	0.3	О
166	An attempt to induce peripheral tolerance in a pig-to-primate transplantation model by infusion of ultrahigh numbers of donor peripheral blood mononuclear cells: first promising results. Transplantation Proceedings, 2000, 32, 1052-1053.	0.3	1
167	VLA-Integrin Î ² -1 chain function is not fully conserved between the human and porcine species: implications for xenotransplantation. Transplantation Proceedings, 2000, 32, 1054-1055.	0.3	2
168	Transmission of pig endogenous retrovirus to primary human cells. Transplantation Proceedings, 2000, 32, 1157.	0.3	15
169	Porcine endogenous retrovirus is not transmitted in a discordant porcine-to-cynomolgus xenokidney transplantation model with long-term survival of organ recipients. Transplantation Proceedings, 2000, 32, 1162.	0.3	10
170	Analysis of potential porcine endogenous retrovirus transmission to baboon in vitro and in vivo. Transplantation Proceedings, 2000, 32, 1163-1164.	0.3	7
171	Porcine endogenous retrovirus is transmitted neither in vivo nor in vitro from porcine endothelial cells to baboons. Transplantation Proceedings, 1999, 31, 913-914.	0.3	23
172	Porcine endogenous retrovirus (PERV) was not transmitted from transplanted porcine endothelial cells to baboons in vivo. Transplant International, 1998, 11, 247-251.	0.8	68
173	Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells. Lancet, The, 1998, 352, 692-694.	6.3	305
174	Porcine endogenous retrovirus (PERV) was not transmitted from transplanted porcine endothelial cells to baboons in vivo. Transplant International, 1998, 11, 247-251.	0.8	42
175	The Human C3a Receptor Is Expressed on Neutrophils and Monocytes, but Not on B or T Lymphocytes. Journal of Experimental Medicine, 1997, 186, 199-207.	4.2	151
176	The C terminus of the human C5a receptor (CD88) is required for normal ligand-dependent receptor internalization. European Journal of Immunology, 1997, 27, 1522-1529.	1.6	30
177	Expression cloning of the human C3a anaphylatoxin receptor (C3aR) from differentiated U-937 cells. European Journal of Immunology, 1996, 26, 1944-1950.	1.6	172
178	Differential regulation of the C3a and C5a receptors (CD88) by IFN-gamma and PMA in U937 cells and related myeloblastic cell lines. Journal of Immunology, 1996, 157, 5574-81.	0.4	28
179	IFN-gamma up-regulates the human C5a receptor (CD88) in myeloblastic U937 cells and related cell lines. Journal of Immunology, 1995, 155, 4419-26.	0.4	20
180	Amino acids 327-350 of the human C5a-receptor are not essential for [125I]C5a binding in COS cells and signal transduction inXenopusoocytes. FEBS Letters, 1994, 344, 79-82.	1.3	10