Erwin J G Peterman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7687767/publications.pdf Version: 2024-02-01

		43973	56606
122	7,860	48	83
papers	citations	h-index	g-index
131	131	131	7364
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Duplex DNA and BLM regulate gate opening by the human TopoIIIα-RMI1-RMI2 complex. Nature Communications, 2022, 13, 584.	5.8	8
2	Extreme mechanics of colloidal polymers under compression: Buckling, creep, and break-up. Physical Review Materials, 2022, 6, .	0.9	2
3	Nonlinear mechanics of human mitotic chromosomes. Nature, 2022, 605, 545-550.	13.7	30
4	Quantitative Acoustophoresis. ACS Nanoscience Au, 2022, 2, 341-354.	2.0	4
5	Imaging adult C. elegans live using lightâ€sheet microscopy. Journal of Microscopy, 2021, 281, 214-223.	0.8	8
6	Unravelling the mechanisms of Type 1A topoisomerases using single-molecule approaches. Nucleic Acids Research, 2021, 49, 5470-5492.	6.5	12
7	Elucidating the Role of Topological Constraint on the Structure of Overstretched DNA Using Fluorescence Polarization Microscopy. Journal of Physical Chemistry B, 2021, 125, 8351-8361.	1.2	4
8	The Mechanics of Mitotic Chromosomes. Quarterly Reviews of Biophysics, 2021, 54, 1-41.	2.4	8
9	Direct imaging of intraflagellar-transport turnarounds reveals that motors detach, diffuse, and reattach to opposite-direction trains. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
10	Constructing arrays of nucleosome positioning sequences using Gibson Assembly for single-molecule studies. Scientific Reports, 2020, 10, 9903.	1.6	20
11	The temperature dependence of kinesin motor-protein mechanochemistry. Biochemical and Biophysical Research Communications, 2020, 529, 812-818.	1.0	5
12	Imaging unlabeled proteins on DNA with super-resolution. Nucleic Acids Research, 2020, 48, e34-e34.	6.5	10
13	The crowding dynamics of the motor protein kinesin-II. PLoS ONE, 2020, 15, e0228930.	1.1	8
14	Cutting off ciliary protein import: intraflagellar transport after dendritic femtosecond-laser ablation. Molecular Biology of the Cell, 2020, 31, 324-334.	0.9	5
15	Motor Proteins: It Runs in the Family, but at Different Speeds. Current Biology, 2020, 30, R282-R285.	1.8	0
16	Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S-DNA. Science Advances, 2019, 5, eaav1083.	4.7	42
17	Supercoiling DNA optically. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26534-26539.	3.3	23
18	Two distinct conformational states define the interaction of human <scp>RAD</scp> 51― <scp>ATP</scp> with singleâ€stranded <scp>DNA</scp> . EMBO Journal, 2018, 37, .	3.5	58

Erwin J G Peterman

#	Article	IF	CITATIONS
19	Quantifying Local Molecular Tension Using Intercalated DNA Fluorescence. Nano Letters, 2018, 18, 2274-2281.	4.5	17
20	A Brief Introduction to Single-Molecule Fluorescence Methods. Methods in Molecular Biology, 2018, 1665, 93-113.	0.4	8
21	Single-Molecule Fluorescence Microscopy in Living Caenorhabditis elegans. Methods in Molecular Biology, 2018, 1665, 145-154.	0.4	11
22	Single-Molecule Turnarounds of Intraflagellar Transport at the C.Âelegans Ciliary Tip. Cell Reports, 2018, 25, 1701-1707.e2.	2.9	35
23	Interplay between Ciliary Ultrastructure and IFT-Train Dynamics Revealed by Single-Molecule Super-resolution Imaging. Cell Reports, 2018, 25, 224-235.	2.9	22
24	Single-Cell Acoustic Force Spectroscopy: Resolving Kinetics and Strength of T Cell Adhesion to Fibronectin. Cell Reports, 2018, 24, 3008-3016.	2.9	33
25	Reconstitution of anaphase DNA bridge recognition and disjunction. Nature Structural and Molecular Biology, 2018, 25, 868-876.	3.6	38
26	Adaptive optics via self-interference digital holography for non-scanning three-dimensional imaging in biological samples. Biomedical Optics Express, 2018, 9, 2614.	1.5	11
27	A polarized view on DNA under tension. Journal of Chemical Physics, 2018, 148, 123306.	1.2	13
28	Viscoelastic properties of vimentin originate from nonequilibrium conformational changes. Science Advances, 2018, 4, eaat1161.	4.7	52
29	Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy. Methods in Enzymology, 2017, 582, 85-119.	0.4	66
30	Ensemble and single-molecule dynamics of IFT dynein in Caenorhabditis elegans cilia. Nature Communications, 2017, 8, 14591.	5.8	48
31	Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain. Physical Review Letters, 2017, 118, 048101.	2.9	84
32	Switching between Exonucleolysis and Replication by T7 DNA Polymerase Ensures High Fidelity. Biophysical Journal, 2017, 112, 575-583.	0.2	32
33	Human RAD52 Captures and Holds DNA Strands, Increases DNA Flexibility, and Prevents Melting of Duplex DNA: Implications for DNA Recombination. Cell Reports, 2017, 18, 2845-2853.	2.9	31
34	Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS Journal, 2017, 284, 2905-2931.	2.2	173
35	Programming the mechanics of cohesive fiber networks by compression. Soft Matter, 2017, 13, 8886-8893.	1.2	23
36	Correlation Imaging Reveals Specific Crowding Dynamics of Kinesin Motor Proteins. Physical Review X, 2017, 7, .	2.8	12

#	Article	IF	CITATIONS
37	Hyperstretching DNA. Nature Communications, 2017, 8, 2197.	5.8	28
38	Probing DNA–DNA Interactions with a Combination of Quadruple-Trap Optical Tweezers and Microfluidics. Methods in Molecular Biology, 2017, 1486, 275-293.	0.4	7
39	Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments. Methods in Molecular Biology, 2017, 1486, 257-272.	0.4	10
40	Single-molecule observation of DNA compaction by meiotic protein SYCP3. ELife, 2017, 6, .	2.8	36
41	Unravelling the structural plasticity of stretched DNA under torsional constraint. Nature Communications, 2016, 7, 11810.	5.8	22
42	Why motor proteins team up - Intraflagellar transport inC. eleganscilia. Worm, 2016, 5, e1170275.	1.0	4
43	Tuning the Music: Acoustic Force Spectroscopy (AFS) 2.0. Methods, 2016, 105, 26-33.	1.9	51
44	High-resolution real-time dual-view imaging with multiple point of view microscopy. Biomedical Optics Express, 2016, 7, 3631.	1.5	10
45	Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales. Biophysical Journal, 2016, 111, 1026-1034.	0.2	51
46	Sliding sleeves of XRCC4–XLF bridge DNA and connect fragments of broken DNA. Nature, 2016, 535, 566-569.	13.7	137
47	<i>KymographClear</i> and <i>KymographDirect</i> : two tools for the automated quantitative analysis of molecular and cellular dynamics using kymographs. Molecular Biology of the Cell, 2016, 27, 1948-1957.	0.9	172
48	Kinesin's gait captured. Nature Chemical Biology, 2016, 12, 206-207.	3.9	1
49	MreB-Dependent Organization of the E.Âcoli Cytoplasmic Membrane Controls Membrane Protein Diffusion. Biophysical Journal, 2016, 110, 1139-1149.	0.2	72
50	Optical Pushing: A Tool for Parallelized Biomolecule Manipulation. Biophysical Journal, 2016, 110, 44-50.	0.2	10
51	The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics. Nature Communications, 2015, 6, 7304.	5.8	157
52	Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C.Âelegans cilia. Nature Cell Biology, 2015, 17, 1536-1545.	4.6	146
53	Acoustic force spectroscopy. Nature Methods, 2015, 12, 47-50.	9.0	185
54	Small steps and giant leaps. ELife, 2015, 4, .	2.8	1

#	Article	IF	CITATIONS
55	Förster resonance energy transfer and kinesin motor proteins. Chemical Society Reviews, 2014, 43, 1144-1155.	18.7	52
56	Optical Tweezers Analysis of DNA–Protein Complexes. Chemical Reviews, 2014, 114, 3087-3119.	23.0	160
57	Imaging and quantification of trans-membrane protein diffusion in living bacteria. Physical Chemistry Chemical Physics, 2014, 16, 12625-12634.	1.3	43
58	Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15090-15095.	3.3	81
59	Mobility Analysis of Superâ€Resolved Proteins on Optically Stretched DNA: Comparing Imaging Techniques and Parameters. ChemPhysChem, 2014, 15, 727-733.	1.0	22
60	STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nature Methods, 2013, 10, 910-916.	9.0	203
61	PICH: A DNA Translocase Specially Adapted for Processing Anaphase Bridge DNA. Molecular Cell, 2013, 51, 691-701.	4.5	86
62	A toolbox for generating singleâ€stranded DNA in optical tweezers experiments. Biopolymers, 2013, 99, 611-620.	1.2	48
63	Single-molecule views on homologous recombination. Quarterly Reviews of Biophysics, 2013, 46, 323-348.	2.4	20
64	Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3859-3864.	3.3	147
65	Protein sliding and DNA denaturation are essential for DNA organization by human mitochondrial transcription factor A. Nature Communications, 2012, 3, 1013.	5.8	101
66	Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA–protein interactions. Physical Chemistry Chemical Physics, 2011, 13, 7263.	1.3	83
67	A Brief Introduction to Single-Molecule Fluorescence Methods. Methods in Molecular Biology, 2011, 783, 81-99.	0.4	12
68	Studying Kinesin's Enzymatic Cycle Using a Single-Motor Confocal Motility Assay, Employing Förster Resonance Energy Transfer. Methods in Molecular Biology, 2011, 778, 19-32.	0.4	1
69	Quantifying how DNA stretches, melts and changes twist under tension. Nature Physics, 2011, 7, 731-736.	6.5	217
70	How to quantify protein diffusion in the bacterial membrane. Biopolymers, 2011, 95, 312-321.	1.2	35
71	Experimental demonstration of an intensity minimum at the focus of a laser beam created by spatial coherence. , 2011, , .		0
72	Biophysics of DNA–ligand interactions resolved by force. Physics of Life Reviews, 2010, 7, 344-345.	1.5	1

#	Article	IF	CITATIONS
73	Structure and Dynamics of the Kinesin–Microtubule Interaction Revealed by Fluorescence Polarization Microscopy. Methods in Cell Biology, 2010, 95, 505-519.	0.5	8
74	Combining Optical Tweezers, Single-Molecule Fluorescence Microscopy, and Microfluidics for Studies of DNA–Protein Interactions. Methods in Enzymology, 2010, 475, 427-453.	0.4	84
75	Experimental demonstration of an intensity minimum at the focus of a laser beam created by spatial coherence: application to the optical trapping of dielectric particles. Optics Letters, 2010, 35, 4166.	1.7	30
76	The Effect of Monastrol on the Processive Motility of a Dimeric Kinesin-5 Head/Kinesin-1 Stalk Chimera. Journal of Molecular Biology, 2010, 399, 1-8.	2.0	23
77	Single Molecule Experiments and the Kinesin Motor Protein Superfamily. , 2009, , 35-60.		5
78	Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18231-18236.	3.3	258
79	Kinesin's step dissected with single-motor FRET. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17741-17746.	3.3	33
80	Mitotic Microtubule Crosslinkers: Insights from Mechanistic Studies. Current Biology, 2009, 19, R1089-R1094.	1.8	75
81	Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. Nature, 2009, 457, 745-748.	13.7	162
82	Dissociation Kinetics of the GroELâ^'gp31 Chaperonin Complex Studied with Förster Resonance Energy Transfer. Biochemistry, 2009, 48, 11692-11698.	1.2	2
83	Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control. Optics Express, 2009, 17, 11335.	1.7	23
84	Alternating-Site Mechanism of Kinesin-1 Characterized by Single-Molecule FRET Using Fluorescent ATP Analogues. Biophysical Journal, 2009, 97, 173-182.	0.2	16
85	Novel Ways to Determine Kinesin-1's Run Length and Randomness Using Fluorescence Microscopy. Biophysical Journal, 2009, 97, 2287-2294.	0.2	22
86	Microtubule-Driven Multimerization Recruits ase1p onto Overlapping Microtubules. Current Biology, 2008, 18, 1713-1717.	1.8	89
87	The Homotetrameric Kinesin-5 KLP61F Preferentially Crosslinks Microtubules into Antiparallel Orientations. Current Biology, 2008, 18, 1860-1864.	1.8	113
88	See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. Nucleic Acids Research, 2008, 36, 4381-4389.	6.5	88
89	Microtubule cross-linking triggers the directional motility of kinesin-5. Journal of Cell Biology, 2008, 182, 421-428.	2.3	138
90	Manipulating and imaging molecular motors with optical traps, single-molecule fluorescence and atomic force microscopy. , 2008, , 217-218.		0

#	Article	IF	CITATIONS
91	The dynamics of the GroELâ€gp31 chaperonin complex studied with fluorescence spectroscopy. FASEB Journal, 2008, 22, 1001.5.	0.2	0
92	Kinesin Moving through the Spotlight: Single-Motor Fluorescence Microscopy with Submillisecond Time Resolution. Biophysical Journal, 2007, 92, 2536-2545.	0.2	30
93	Fluorescent Human RAD51 Reveals Multiple Nucleation Sites and Filament Segments Tightly Associated along a Single DNA Molecule. Structure, 2007, 15, 599-609.	1.6	73
94	Dissecting Elastic Heterogeneity along DNA Molecules Coated Partly with Rad51 Using Concurrent Fluorescence Microscopy and Optical Tweezers. Biophysical Journal, 2006, 91, L78-L80.	0.2	47
95	Allosteric inhibition of kinesin-5 modulates its processive directional motility. Nature Chemical Biology, 2006, 2, 480-485.	3.9	103
96	Calibrating bead displacements in optical tweezers using acousto-optic deflectors. Review of Scientific Instruments, 2006, 77, 013704.	0.6	66
97	Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth. Review of Scientific Instruments, 2006, 77, 063106.	0.6	47
98	The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature, 2005, 435, 114-118.	13.7	607
99	Combining Optical Trapping and Single-Molecule Fluorescence Spectroscopy:Â Enhanced Photobleaching of Fluorophores. Journal of Physical Chemistry B, 2004, 108, 6479-6484.	1.2	107
100	SINGLE-MOLECULE FLUORESCENCE SPECTROSCOPY AND MICROSCOPY OF BIOMOLECULAR MOTORS. Annual Review of Physical Chemistry, 2004, 55, 79-96.	4.8	151
101	Parasitic filtering in position detection systems for optical tweezers. , 2004, , .		2
102	Laser-Induced Heating in Optical Traps. Biophysical Journal, 2003, 84, 1308-1316.	0.2	542
103	Extending the bandwidth of optical-tweezers interferometry. Review of Scientific Instruments, 2003, 74, 3246-3249.	0.6	47
104	ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nature Structural Biology, 2001, 8, 540-544.	9.7	160
105	Polarized Fluorescence Microscopy of Individual and Many Kinesin Motors Bound to Axonemal Microtubules. Biophysical Journal, 2001, 81, 2851-2863.	0.2	68
106	Single-Molecule Fluorescence Resonant Energy Transfer in Calcium Concentration Dependent Cameleon. Journal of Physical Chemistry B, 2000, 104, 3676-3682.	1.2	108
107	Structure and Interactions of the ChlorophyllaMolecules in the Higher Plant Lhcb4 Antenna Protein. Journal of Physical Chemistry B, 2000, 104, 9317-9321.	1.2	22
108	Peridinin Chlorophyll a Protein:  Relating Structure and Steady-State Spectroscopy. Biochemistry, 2000, 39, 5184-5195.	1.2	130

#	Article	IF	CITATIONS
109	The Fluorescence Dynamics of Single Molecules of Green Fluorescent Protein. Journal of Physical Chemistry A, 1999, 103, 10553-10560.	1.1	139
110	Spectroscopic characterization of the spinach Lhcb4 protein (CP29), a minor light-harvesting complex of photosystem II. FEBS Journal, 1999, 262, 817-823.	0.2	51
111	Optical methods for exploring dynamics of single copies of green fluorescent protein. , 1999, 36, 232-238.		42
112	Spectroscopic Properties of the CP43 Core Antenna Protein of Photosystem II. Biophysical Journal, 1999, 77, 3328-3340.	0.2	119
113	Decreasing the Chlorophyll a/b Ratio in Reconstituted LHCII:  Structural and Functional Consequences. Biochemistry, 1999, 38, 6587-6596.	1.2	50
114	The Influence of Aggregation on Triplet Formation in Light-Harvesting Chlorophylla/bPigmentâ~'Protein Complex II of Green Plantsâ€. Biochemistry, 1998, 37, 546-551.	1.2	68
115	Fluorescence and Absorption Spectroscopy of the Weakly Fluorescent Chlorophyll a in Cytochrome b6f of Synechocystis PCC6803. Biophysical Journal, 1998, 75, 389-398.	0.2	73
116	The nature of the excited state of the reaction center of photosystem II of green plants: A high-resolution fluorescence spectroscopy study. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6128-6133.	3.3	99
117	Isolation and Characterisation of the Cytochrome B6F Complex from the Cyanobacterium Synechocystis PCC 6803. , 1998, , 1537-1540.		4
118	Spectroscopic Characterization of Reconstituted Lhcii Which Contains Mainly Chl B and Xanthophylls , 1998, , 259-264.		0
119	Xanthophylls in Light-Harvesting Complex II of Higher Plants: Light Harvesting and Triplet Quenchingâ€. Biochemistry, 1997, 36, 12208-12215.	1.2	128
120	Electronâ^'Phonon Coupling and Vibronic Fine Structure of Light-Harvesting Complex II of Green Plants:  Temperature Dependent Absorption and High-Resolution Fluorescence Spectroscopy. Journal of Physical Chemistry B, 1997, 101, 4448-4457.	1.2	118
121	Ultrafast singlet excitation transfer from carotenoids to chlorophylls via different pathways in light-harvesting complex II of higher plants. Chemical Physics Letters, 1997, 264, 279-284.	1.2	62
122	Low-temperature spectroscopy of monomeric and trimeric forms of reconstituted light-harvesting chlorophyll ab complex. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1273, 171-174.	0.5	32