
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7687766/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene<br>sweetener glycyrrhizin. Proceedings of the National Academy of Sciences of the United States of<br>America, 2008, 105, 14204-14209. | 7.1 | 331       |
| 2  | Triterpene Functional Genomics in Licorice for Identification of CYP72A154 Involved in the<br>Biosynthesis of Glycyrrhizin  Â. Plant Cell, 2011, 23, 4112-4123.                                                                              | 6.6 | 266       |
| 3  | CYP716A Subfamily Members are Multifunctional Oxidases in Triterpenoid Biosynthesis. Plant and Cell Physiology, 2011, 52, 2050-2061.                                                                                                         | 3.1 | 244       |
| 4  | Sterol Side Chain Reductase 2 Is a Key Enzyme in the Biosynthesis of Cholesterol, the Common<br>Precursor of Toxic Steroidal Glycoalkaloids in Potato Â. Plant Cell, 2014, 26, 3763-3774.                                                    | 6.6 | 206       |
| 5  | P450s and UGTs: Key Players in the Structural Diversity of Triterpenoid Saponins. Plant and Cell<br>Physiology, 2015, 56, 1463-1471.                                                                                                         | 3.1 | 187       |
| 6  | Loss of function of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) in Arabidopsis leads to<br>dwarfing, early senescence and male sterility, and reduced sterol levels. Plant Journal, 2004, 37,<br>750-761.                       | 5.7 | 184       |
| 7  | Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases. Proceedings of the United States of America, 1999, 96, 5322-5327.                                                                                      | 7.1 | 178       |
| 8  | Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in <i>Arabidopsis</i> .<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 725-730.                                    | 7.1 | 174       |
| 9  | Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiology and Biochemistry, 2018, 131, 70-77.                                                                         | 5.8 | 150       |
| 10 | Draft genome assembly and annotation of <i>Glycyrrhiza uralensis</i> , a medicinal legume. Plant<br>Journal, 2017, 89, 181-194.                                                                                                              | 5.7 | 148       |
| 11 | Combinatorial Biosynthesis of Legume Natural and Rare Triterpenoids in Engineered Yeast. Plant and<br>Cell Physiology, 2013, 54, 740-749.                                                                                                    | 3.1 | 124       |
| 12 | The Role of <i>Arabidopsis</i> ABCG9 and ABCG31 ATP Binding Cassette Transporters in Pollen Fitness and the Deposition of Steryl Glycosides on the Pollen Coat. Plant Cell, 2014, 26, 310-324.                                               | 6.6 | 110       |
| 13 | Plants Utilize Isoprene Emission as a Thermotolerance Mechanism. Plant and Cell Physiology, 2007, 48, 1254-1262.                                                                                                                             | 3.1 | 109       |
| 14 | Upregulation of phytosterol and triterpene biosynthesis in Centella asiatica hairy roots overexpressed ginseng farnesyl diphosphate synthase. Plant Cell Reports, 2010, 29, 403-411.                                                         | 5.6 | 104       |
| 15 | Lanosterol Synthase in Dicotyledonous Plants. Plant and Cell Physiology, 2006, 47, 565-571.                                                                                                                                                  | 3.1 | 102       |
| 16 | Dolichol Biosynthesis and Its Effects on the Unfolded Protein Response and Abiotic Stress Resistance<br>in <i>Arabidopsis</i> Â Â. Plant Cell, 2008, 20, 1879-1898.                                                                          | 6.6 | 102       |
| 17 | Mevalonic acid partially restores chloroplast and etioplast development in Arabidopsis lacking the non-mevalonate pathway. Planta, 2002, 216, 345-350.                                                                                       | 3.2 | 96        |
| 18 | DNA polymorphisms in the tetrahydrocannabinolic acid (THCA) synthase gene in "drug-type―and<br>"fiber-type―Cannabis sativa L Forensic Science International, 2006, 159, 132-140.                                                             | 2.2 | 95        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Allelic mutant series reveal distinct functions for <i>Arabidopsis</i> cycloartenol synthase 1 in cell viability and plastid biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3163-3168. | 7.1  | 95        |
| 20 | LOVASTATIN INSENSITIVE 1, a Novel Pentatricopeptide Repeat Protein, is a Potential Regulatory Factor of Isoprenoid Biosynthesis in Arabidopsis. Plant and Cell Physiology, 2007, 48, 322-331.                                                   | 3.1  | 80        |
| 21 | Glycyrrhiza uralensis Transcriptome Landscape and Study of Phytochemicals. Plant and Cell<br>Physiology, 2013, 54, 697-710.                                                                                                                     | 3.1  | 80        |
| 22 | Molecular Genetics of Plant Sterol Backbone Synthesis. Lipids, 2007, 42, 47-54.                                                                                                                                                                 | 1.7  | 76        |
| 23 | Establishment of a modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato. Scientific Reports, 2018, 8, 13753.                                               | 3.3  | 74        |
| 24 | Fungal and bacterial disease resistance in transgenic plants expressing human lysozyme. Plant Cell<br>Reports, 1997, 16, 674-679.                                                                                                               | 5.6  | 73        |
| 25 | Identification and genome organization of saponin pathway genes from a wild crucifer, and their use<br>for transient production of saponins in <i>Nicotiana benthamiana</i> . Plant Journal, 2015, 84, 478-490.                                 | 5.7  | 73        |
| 26 | A novel glucosyltransferase involved in steroid saponin biosynthesis in Solanum aculeatissimum.<br>Plant Molecular Biology, 2005, 57, 225-239.                                                                                                  | 3.9  | 68        |
| 27 | The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing. Plant Journal, 2010, 61, 456-466.                                                        | 5.7  | 67        |
| 28 | Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid<br>Glycoalkaloid Biosynthetic Pathway. Plant Physiology, 2016, 171, 2458-2467.                                                                      | 4.8  | 67        |
| 29 | Functional specialization of <scp>UDP</scp> â€glycosyltransferase 73P12 in licorice to produce a sweet triterpenoid saponin, glycyrrhizin. Plant Journal, 2019, 99, 1127-1143.                                                                  | 5.7  | 67        |
| 30 | Chemical Phenotypes of the hmg1 and hmg2 Mutants of Arabidopsis Demonstrate the In-planta Role of HMG-CoA Reductase in Triterpene Biosynthesis. Chemical and Pharmaceutical Bulletin, 2007, 55, 1518-1521.                                      | 1.3  | 65        |
| 31 | Structure and hemolytic activity relationships of triterpenoid saponins and sapogenins. Journal of<br>Natural Medicines, 2017, 71, 50-58.                                                                                                       | 2.3  | 65        |
| 32 | Complete blockage of the mevalonate pathway results in male gametophyte lethality. Journal of<br>Experimental Botany, 2009, 60, 2055-2064.                                                                                                      | 4.8  | 62        |
| 33 | A cellulose synthase-derived enzyme catalyses 3-O-glucuronosylation in saponin biosynthesis. Nature<br>Communications, 2020, 11, 5664.                                                                                                          | 12.8 | 58        |
| 34 | Development of Capsicum EST–SSR markers for species identification and in silico mapping onto the tomato genome sequence. Molecular Breeding, 2013, 31, 101-110.                                                                                | 2.1  | 56        |
| 35 | A Dioxygenase Catalyzes Steroid 16α-Hydroxylation in Steroidal Glycoalkaloid Biosynthesis. Plant<br>Physiology, 2017, 175, 120-133.                                                                                                             | 4.8  | 52        |
| 36 | Cloning and characterization of a squalene synthase gene from a petroleum plant, Euphorbia tirucalli<br>L Planta, 2009, 229, 1243-1252.                                                                                                         | 3.2  | 50        |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The AMI1 gene family: indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. Journal of Experimental Botany, 2010, 61, 25-32.                                                                                              | 4.8 | 50        |
| 38 | Novel triterpene oxidizing activity of <i>Arabidopsis thaliana</i> CYP716A subfamily enzymes. FEBS<br>Letters, 2016, 590, 533-540.                                                                                                          | 2.8 | 50        |
| 39 | Green leaf volatiles enhance methyl jasmonate response in Arabidopsis. Journal of Bioscience and<br>Bioengineering, 2012, 114, 540-545.                                                                                                     | 2.2 | 48        |
| 40 | The Basic Helix–Loop–Helix Transcription Factor GubHLH3 Positively Regulates Soyasaponin<br>Biosynthetic Genes in Glycyrrhiza uralensis. Plant and Cell Physiology, 2018, 59, 783-796.                                                      | 3.1 | 48        |
| 41 | Organization and characterization of the virCD genes from Agrobacterium rhizogenes. Molecular<br>Genetics and Genomics, 1988, 213, 229-237.                                                                                                 | 2.4 | 44        |
| 42 | The <i>NtAMI1</i> gene functions in cell division of tobacco BYâ€2 cells in the presence of indoleâ€3â€acetamide. FEBS Letters, 2009, 583, 487-492.                                                                                         | 2.8 | 43        |
| 43 | CYP716A179 functions as a triterpene C-28 oxidase in tissue-cultured stolons of Glycyrrhiza uralensis.<br>Plant Cell Reports, 2017, 36, 437-445.                                                                                            | 5.6 | 43        |
| 44 | Artemisinin-based antimalarial research: application of biotechnology to the production of<br>artemisinin, its mode of action, and the mechanism of resistance of Plasmodium parasites. Journal of<br>Natural Medicines, 2016, 70, 318-334. | 2.3 | 42        |
| 45 | The Molecular Cloning of Dihydroartemisinic Aldehyde Reductase and its Implication in Artemisinin<br>Biosynthesis in <i>Artemisia annua</i> . Planta Medica, 2010, 76, 1778-1783.                                                           | 1.3 | 41        |
| 46 | Amyloplast Formation in Cultured Tobacco BY-2 Cells Requires a High Cytokinin Content. Plant and<br>Cell Physiology, 2002, 43, 1534-1541.                                                                                                   | 3.1 | 38        |
| 47 | Cytochrome P450 Monooxygenase CYP716A141 is a Unique β-Amyrin C-16β Oxidase Involved in Triterpenoid<br>Saponin Biosynthesis in Platycodon grandiflorus. Plant and Cell Physiology, 2017, 58, 874-884.                                      | 3.1 | 37        |
| 48 | Hairy Root-activation Tagging: a High-throughput System for Activation Tagging in Transformed Hairy<br>Roots. Plant Molecular Biology, 2005, 59, 793-807.                                                                                   | 3.9 | 36        |
| 49 | Function of the <i>aux</i> and <i>rol</i> genes of the Ri plasmid in plant cell division in vitro. Plant<br>Signaling and Behavior, 2009, 4, 1145-1147.                                                                                     | 2.4 | 35        |
| 50 | Differences in plant growth and leaf sesamin content of the lignan-rich sesame variety<br>^ ^#8216;Gomazou^ ^#8217; under continuous light of different wavelengths. Plant Biotechnology,<br>2013, 30, 1-8.                                 | 1.0 | 35        |
| 51 | Growth and steroidal saponin production in hairy root cultures of Solanum aculeatissimum. Plant<br>Cell Reports, 1995, 14, 413-7.                                                                                                           | 5.6 | 34        |
| 52 | A novel orfB-related gene of carrot mitochondrial genomes that is associated with homeotic cytoplasmic male sterility (CMS). Plant Molecular Biology, 2001, 46, 99-107.                                                                     | 3.9 | 33        |
| 53 | Identification of marneral synthase, which is critical for growth and development in Arabidopsis.<br>Plant Journal, 2012, 72, 791-804.                                                                                                      | 5.7 | 33        |
| 54 | Identification of a 3β-Hydroxysteroid Dehydrogenase/ 3-Ketosteroid Reductase Involved in α-Tomatine<br>Biosynthesis in Tomato. Plant and Cell Physiology, 2019, 60, 1304-1315.                                                              | 3.1 | 33        |

| #  | Article                                                                                                                                                                                                                                            | IF                      | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|
| 55 | Continuous production of scopolamine by a culture of Duboisia leichhardtii hairy root clone in a<br>bioreactor system. Applied Microbiology and Biotechnology, 1993, 40, 219.                                                                      | 3.6                     | 32           |
| 56 | Planteose as a storage carbohydrate required for early stage of germination of Orobanche minor and<br>its metabolism as a possible target for selective control. Journal of Experimental Botany, 2015, 66,<br>3085-3097.                           | 4.8                     | 32           |
| 57 | <scp>AKIN</scp> 10, a representative <i>Arabidopsis </i> <scp>SNF</scp> 1â€related protein kinase 1<br>(Sn <scp>RK</scp> 1), phosphorylates and downregulates plant <scp>HMG</scp> â€CoA reductase. FEBS<br>Letters, 2017, 591, 1159-1166.         | 2.8                     | 32           |
| 58 | Efficient genome engineering using Platinum TALEN in potato. Plant Biotechnology, 2019, 36, 167-173.                                                                                                                                               | 1.0                     | 32           |
| 59 | Functional Characterization of CYP716 Family P450 Enzymes in Triterpenoid Biosynthesis in Tomato.<br>Frontiers in Plant Science, 2017, 8, 21.                                                                                                      | 3.6                     | 30           |
| 60 | Scopolamine release into media by Duboisia leichhardtii hairy root clones. Applied Microbiology and<br>Biotechnology, 1992, 37, 554.                                                                                                               | 3.6                     | 29           |
| 61 | Identification of α-Tomatine 23-Hydroxylase Involved in the Detoxification of a Bitter Glycoalkaloid.<br>Plant and Cell Physiology, 2020, 61, 21-28.                                                                                               | 3.1                     | 29           |
| 62 | Characterization and engineering of glycosyltransferases responsible for steroid saponin biosynthesis in Solanaceous plants. Phytochemistry, 2007, 68, 478-486.                                                                                    | 2.9                     | 27           |
| 63 | In vitro proliferation and triterpenoid characteristics of licorice (Glycyrrhiza uralensis Fischer,) Tj ETQq1 1 0.7843                                                                                                                             | 314 <sub>1</sub> rgBT / | Overlock 10⊤ |
| 64 | β-Amyrin Oxidation by Oat CYP51H10 Expressed Heterologously in Yeast Cells: The First Example of<br>CYP51-Dependent Metabolism Other than the 14-Demethylation of Sterol Precursors. Biological and<br>Pharmaceutical Bulletin, 2012, 35, 801-804. | 1.4                     | 25           |
| 65 | Phytochemical Genomics on the Way. Plant and Cell Physiology, 2013, 54, 645-646.                                                                                                                                                                   | 3.1                     | 25           |
| 66 | Isolation and Characterization of the Soybean Sg-3 Gene that is Involved in Genetic Variation in Sugar<br>Chain Composition at the C-3 Position in Soyasaponins. Plant and Cell Physiology, 2018, 59, 797-810.                                     | 3.1                     | 25           |
| 67 | The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase. Nature Communications, 2021, 12, 1300.                                                                                        | 12.8                    | 25           |
| 68 | Expressed sequence tags from rhizomes of Glycyrrhiza uralensis. Plant Biotechnology, 2009, 26, 105-107.                                                                                                                                            | 1.0                     | 23           |
| 69 | Characterization of steroid 5α-reductase involved in α-tomatine biosynthesis in tomatoes. Plant<br>Biotechnology, 2019, 36, 253-263.                                                                                                               | 1.0                     | 22           |
| 70 | Comparative functional analysis of CYP71AV1 natural variants reveals an important residue for the successive oxidation of amorphaâ€4,11â€diene. FEBS Letters, 2013, 587, 278-284.                                                                  | 2.8                     | 21           |
| 71 | Lotus japonicus Triterpenoid Profile and Characterization of the CYP716A51 and LjCYP93E1 Genes<br>Involved in Their Biosynthesis In Planta. Plant and Cell Physiology, 2019, 60, 2496-2509.                                                        | 3.1                     | 21           |
| 72 | Targeted genome editing in tetraploid potato through transient TALEN expression by<br><i>Agrobacterium</i> infection. Plant Biotechnology, 2020, 37, 205-211.                                                                                      | 1.0                     | 21           |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Functional characterization of CYP71D443, a cytochrome P450 catalyzing C-22 hydroxylation in the 20-hydroxyecdysone biosynthesis of Ajuga hairy roots. Phytochemistry, 2016, 127, 23-28.                                                          | 2.9 | 20        |
| 74 | Genetic and functional characterization of Sg-4 glycosyltransferase involved in the formation of sugar chain structure at the C-3 position of soybean saponins. Phytochemistry, 2018, 156, 96-105.                                                | 2.9 | 20        |
| 75 | Ajuga Δ24-Sterol Reductase Catalyzes the Direct Reductive Conversion of 24-Methylenecholesterol to<br>Campesterol. Journal of Biological Chemistry, 2016, 291, 8189-8198.                                                                         | 3.4 | 19        |
| 76 | Identification of oxidosqualene cyclases from the medicinal legume tree <i>Bauhinia forficata</i> : a<br>step toward discovering preponderant αâ€amyrinâ€producing activity. New Phytologist, 2019, 224, 352-366.                                 | 7.3 | 19        |
| 77 | Genetic variation of petaloid male-sterile cytoplasm of carrots revealed by sequence-tagged sites (STSs). Theoretical and Applied Genetics, 1999, 99, 837-843.                                                                                    | 3.6 | 18        |
| 78 | Determination of aculeatisides based on immunoassay using a polyclonal antibody against aculeatiside<br>A. Analyst, The, 2002, 127, 1328-1332.                                                                                                    | 3.5 | 18        |
| 79 | Comparative analysis of CYP716A subfamily enzymes for the heterologous production of C-28 oxidized triterpenoids in transgenic yeast. Plant Biotechnology, 2018, 35, 131-139.                                                                     | 1.0 | 18        |
| 80 | Identification and characterization of (+)-α-bisabolol and 7-epi-silphiperfol-5-ene synthases from<br>Artemisia abrotanum. Phytochemistry, 2019, 164, 144-153.                                                                                    | 2.9 | 18        |
| 81 | Functional Analysis of Amorpha-4,11-Diene Synthase (ADS) Homologs from<br>Non-Artemisinin-Producing <i>Artemisia</i> Species: The Discovery of Novel Koidzumiol and<br>(+)-α-Bisabolol Synthases. Plant and Cell Physiology, 2016, 57, 1678-1688. | 3.1 | 17        |
| 82 | Structure–Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and<br>Lipoxygenase Enzymes. Journal of Natural Products, 2019, 82, 3311-3320.                                                                      | 3.0 | 17        |
| 83 | Plant-derived isoprenoid sweeteners: recent progress in biosynthetic gene discovery and perspectives on microbial production. Bioscience, Biotechnology and Biochemistry, 2018, 82, 927-934.                                                      | 1.3 | 16        |
| 84 | Identification of furostanol glycoside 26- <i>O</i> -β-glucosidase involved in steroidal<br>saponin biosynthesis from <i>Dioscorea esculenta</i> . Plant Biotechnology, 2015, 32,<br>299-308.                                                     | 1.0 | 15        |
| 85 | Isolation of Artemisia capillaris membrane-bound di-prenyltransferase for phenylpropanoids and redesign of artepillin C in yeast. Communications Biology, 2019, 2, 384.                                                                           | 4.4 | 15        |
| 86 | Growth and Cell Wall Properties in Hypocotyls of Arabidopsis tua6 Mutant under Microgravity<br>Conditions in Space. Uchu Seibutsu Kagaku, 2009, 23, 71-76.                                                                                        | 0.3 | 14        |
| 87 | Tomato <i>E8</i> Encodes a C-27 Hydroxylase in Metabolic Detoxification of α-Tomatine during Fruit<br>Ripening. Plant and Cell Physiology, 2021, 62, 775-783.                                                                                     | 3.1 | 14        |
| 88 | Exogenous plant H6H but not bacterial HCHL gene is expressed in Duboisia leichhardtii hairy roots and affects tropane alkaloid production. Enzyme and Microbial Technology, 2006, 39, 1183-1189.                                                  | 3.2 | 13        |
| 89 | Albinism and cell viability in cycloartenol synthase deficient Arabidopsis. Plant Signaling and Behavior, 2008, 3, 978-980.                                                                                                                       | 2.4 | 13        |
| 90 | The aux1 gene of the Ri plasmid is sufficient to confer auxin autotrophy in tobacco BY-2 cells. Journal of Plant Physiology, 2009, 166, 729-738.                                                                                                  | 3.5 | 13        |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Triterpenoid levels are reduced during Euphorbia tirucalli L. callus formation. Plant Biotechnology, 2010, 27, 105-109.                                                                                                       | 1.0 | 13        |
| 92  | Glucosyltransferase activity of <i>Arabidopsis</i> UGT71C1 towards pinoresinol and<br>lariciresinol. Plant Biotechnology, 2014, 31, 561-566.                                                                                  | 1.0 | 13        |
| 93  | Characteristics of Scopolamine-releasing Hairy Root Clones of <i>Duboisia leichhardtii</i> .<br>Bioscience, Biotechnology and Biochemistry, 1993, 57, 1398-1399.                                                              | 1.3 | 11        |
| 94  | Transcriptome sequencing and identification of cytochrome P450 monooxygenases involved in the<br>biosynthesis of maslinic acid and corosolic acid in <i>Avicennia marina</i> . Plant<br>Biotechnology, 2018, 35, 341-348.     | 1.0 | 11        |
| 95  | Molecular Basis of C-30 Product Regioselectivity of Legume Oxidases Involved in High-Value<br>Triterpenoid Biosynthesis. Frontiers in Plant Science, 2019, 10, 1520.                                                          | 3.6 | 11        |
| 96  | The "all-in-one" rol-type binary vectors as a tool for functional genomic studies using hairy roots.<br>Plant Biotechnology, 2008, 25, 347-355.                                                                               | 1.0 | 11        |
| 97  | Production of Pharmaceuticals by Plant Tissue Cultures. , 2010, , 615-628.                                                                                                                                                    |     | 10        |
| 98  | A New Insight into Application for Barley Chromosome Addition Lines of Common Wheat: Achievement of Stigmasterol Accumulation Â. Plant Physiology, 2011, 157, 1555-1567.                                                      | 4.8 | 10        |
| 99  | Phosphoproteome Exploration Reveals a Reformatting of Cellular Processes in Response to Low<br>Sterol Biosynthetic Capacity in <i>Arabidopsis</i> . Journal of Proteome Research, 2012, 11, 1228-1239.                        | 3.7 | 10        |
| 100 | Successful expression of a novel bacterial gene for pinoresinol reductase and its effect on lignan<br>biosynthesis in transgenic Arabidopsis thaliana. Applied Microbiology and Biotechnology, 2014, 98,<br>8165-8177.        | 3.6 | 10        |
| 101 | Organ-Specific and Auxin-Inducible Expression of Two Tobacco par A-Related Genes in Transgenic Plants. DNA Research, 1994, 1, 213-222.                                                                                        | 3.4 | 9         |
| 102 | Isolation and Identification of a Novel Chlorophenol from a Cell Suspension Culture of Helichrysum aureonitens. Chemical and Pharmaceutical Bulletin, 2009, 57, 1282-1283.                                                    | 1.3 | 9         |
| 103 | Functional analysis of orthologous artemisinic aldehyde Δ11(13)-reductase reveals potential artemisinin-producing activity in non-artemisinin-producing <i>Artemisia absinthium</i> . Plant Biotechnology, 2014, 31, 483-491. | 1.0 | 9         |
| 104 | Atrazine exposed phytoplankton causes the production of non-viable offspring on Daphnia magna.<br>Marine Environmental Research, 2019, 145, 177-183.                                                                          | 2.5 | 9         |
| 105 | Production of the bioactive plantâ€derived triterpenoid morolic acid in engineered <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2020, 117, 2198-2208.                                                  | 3.3 | 8         |
| 106 | Enhanced Secretory Activity of Atropa belladonna Hairy Root Culture Over-expressing<br>ADP-Ribosylation Factor Gene. Biological and Pharmaceutical Bulletin, 2008, 31, 1465-1468.                                             | 1.4 | 7         |
| 107 | Characterization of Câ€26 aminotransferase, indispensable for steroidal glycoalkaloid biosynthesis.<br>Plant Journal, 2021, 108, 81-92.                                                                                       | 5.7 | 7         |
| 108 | Comparative Analysis of NADPH-Cytochrome P450 Reductases From Legumes for Heterologous<br>Production of Triterpenoids in Transgenic Saccharomyces cerevisiae. Frontiers in Plant Science, 2021,<br>12, 762546.                | 3.6 | 7         |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Photobiocatalyzed asymmetric reduction of ketones using Chlorella sp. MK201. Biotechnology Letters, 2012, 34, 2083-2086.                                                                                       | 2.2 | 6         |
| 110 | Dark conditions enhance aluminum tolerance in several rice cultivars via multiple modulations of membrane sterols. Journal of Experimental Botany, 2018, 69, 567-577.                                          | 4.8 | 6         |
| 111 | The mevalonate pathway but not the methylerythritol phosphate pathway is critical for elaioplast and pollen coat development in <i>Arabidopsis</i> . Plant Biotechnology, 2018, 35, 381-385.                   | 1.0 | 6         |
| 112 | Novel root culture system using a recessive mutant with a rooty phenotype. Plant Biotechnology, 2008, 25, 197-200.                                                                                             | 1.0 | 5         |
| 113 | Evidence that the <i>Arabidopsis thaliana</i> 3-hydroxy-3-methylglutaryl-CoA reductase 1 is<br>phosphorylated at Ser577 <i>in planta</i> . Plant Biotechnology, 2018, 35, 1-7.                                 | 1.0 | 5         |
| 114 | The effect of nojirimycin on the transcriptome of germinating <i>Orobanche minor</i><br>seeds. Journal of Pesticide Sciences, 2020, 45, 230-237.                                                               | 1.4 | 5         |
| 115 | Tandem Gene Duplication of Dioxygenases Drives the Structural Diversity of Steroidal Glycoalkaloids<br>in the Tomato Clade. Plant and Cell Physiology, 2022, 63, 981-990.                                      | 3.1 | 5         |
| 116 | A model for a bioconversion system with the promoter of the parAt gene, which confers a high level of expression of a transgene in hairy roots. Applied Microbiology and Biotechnology, 1994, 40, 841-845.     | 3.6 | 4         |
| 117 | Identification and characterization of a novel sesquiterpene synthase, 4-amorphen-11-ol synthase, from <i>Artemisia maritima</i> . Plant Biotechnology, 2018, 35, 113-121.                                     | 1.0 | 4         |
| 118 | Allylic Hydroxylation Activity Is a Source of Saponin Chemodiversity in the Genus <i>Glycyrrhiza</i> .<br>Plant and Cell Physiology, 2021, 62, 262-271.                                                        | 3.1 | 4         |
| 119 | Platform for "Chemical Metabolic Switching―to Increase Sesquiterpene Content in Plants. Plant<br>Biotechnology, 2017, 34, 65-69.                                                                               | 1.0 | 3         |
| 120 | Preface to the special issue "Technology in tissue culture toward horizon of plant biotechnologyâ€.<br>Plant Biotechnology, 2020, 37, 117-120.                                                                 | 1.0 | 3         |
| 121 | Expression of Two Key Enzymes of Artemisinin Biosynthesis FPS and ADS genes in Saccharomyces cerevisiae. Advanced Pharmaceutical Bulletin, 2021, 11, 181-187.                                                  | 1.4 | 3         |
| 122 | Title is missing!. Kagaku To Seibutsu, 2009, 47, 84-86.                                                                                                                                                        | 0.0 | 2         |
| 123 | Plant Gateway Vectors for RNAi as a Tool for Functional Genomic Studies. Methods in Molecular<br>Biology, 2011, 744, 27-35.                                                                                    | 0.9 | 2         |
| 124 | Application of Continuous Light in a Plant Factory System 3. Moderation of Injuries Induced by<br>Continuous Light and Relative Tolerance to Continuous Light. Shokubutsu Kankyo Kogaku, 2011, 23,<br>137-143. | 0.1 | 2         |
| 125 | Characterization of UDP-glucose dehydrogenase isoforms in the medicinal legume <i>Glycyrrhiza uralensis</i> . Plant Biotechnology, 2021, 38, 205-218.                                                          | 1.0 | 2         |
| 126 | Heterologous Expression of Triterpene Biosynthetic Genes in Yeast and Subsequent Metabolite<br>Identification Through GC-MS. Methods in Molecular Biology, 2014, 1153, 235-243.                                | 0.9 | 2         |

| #   | Article                                                                                                                                                                                                                  | IF       | CITATIONS              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|
| 127 | Plant Cytochrome P450s in Triterpenoid Biosynthesis: Diversity and Application to Combinatorial Biosynthesis. , 2014, , 125-133.                                                                                         |          | 2                      |
| 128 | Application of Continuous Light in a Plant Factory System 1. Growth Habit and Occurrence of Injury in<br>Solanaceae and Cucurbitaceae Crops Grown Under Continuous Light. Shokubutsu Kankyo Kogaku,<br>2011, 23, 93-100. | 0.1      | 2                      |
| 129 | Agrobacterium-Mediated Transformation ofEuphorbia tirucalliCallus. Bioscience, Biotechnology and<br>Biochemistry, 2010, 74, 851-853.                                                                                     | 1.3      | 1                      |
| 130 | Insights into the diversification of subclade IVa bHLH transcription factors in Fabaceae. BMC Plant<br>Biology, 2021, 21, 109.                                                                                           | 3.6      | 1                      |
| 131 | Current status and future of genome editing technologies for breeding of agricultural products.<br>Ikushugaku Kenkyu, 2017, 19, 14-20.                                                                                   | 0.3      | 1                      |
| 132 | Application of Continuous Light in a Plant Factory System2. Growth Habit and Occurrence of Injury in<br>Asteraceae and Other Crops Grown Under Continuous Light. Shokubutsu Kankyo Kogaku, 2011, 23,<br>127-136.         | 0.1      | 1                      |
| 133 | Functional Analysis of HMG-CoA Reductase and Oxidosqualene Cyclases in Arabidopsis. , 2012, , 465-474.                                                                                                                   |          | 0                      |
| 134 | å››å€ä¼2"作物,ã,,ãf£ã,¬ã, <b>ë</b> f¢ã®ã,²ãfŽãfç∵集. Kagaku To Seibutsu, 2018, 56, 566-572.                                                                                                                                 | 0.0      | 0                      |
| 135 | é«~ç‰æড়‰©ç‰¹ç•°çš"IPP生å•̂æ^èª;ç~€æ©Ÿæ§‹ã«è¦‹ã,‰ã,Œã,‹ã,ªãf«ã,¬ãfãf©é—"ãfãffãf^ãf~ãf¼ã,~. Plan                                                                                                                           | t Marpho | lo <b>g</b> y, 2009, 2 |
| 136 | Glycyrrhizin production in hairy root cultures of Glycyrrhiza uralensis induced triterpenoid biosynthetic gene. Planta Medica, 2016, 81, S1-S381.                                                                        | 1.3      | 0                      |
| 137 | Revealing the catalytic residues of amorpha-4,11-diene synthase (ADS): new insight for engineering terpene synthases. Biotarget, 0, 1, 19-19.                                                                            | 0.5      | 0                      |
| 138 | Expression of Two Key Enzymes of Artemisinin Biosynthesis FPS and ADS genes in. Advanced<br>Pharmaceutical Bulletin, 2021, 11, 181-187.                                                                                  | 1.4      | 0                      |
| 139 | A model for a bioconversion system with the promoter of the parAt gene, which confers a high level of expression of a transgene in hairy roots. Applied Microbiology and Biotechnology, 1994, 40, 841-845.               | 3.6      | 0                      |