Lynne Cassimeris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7687683/publications.pdf

Version: 2024-02-01

57	3,417	201575	155592
papers	citations	h-index	g-index
			2224
61	61	61	3384
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The oncoprotein 18/stathmin family of microtubule destabilizers. Current Opinion in Cell Biology, 2002, 14, 18-24.	2.6	386
2	Mechanochemical Model of Microtubule Structure and Self-Assembly Kinetics. Biophysical Journal, 2005, 89, 2911-2926.	0.2	230
3	Estimates of lateral and longitudinal bond energies within the microtubule lattice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6035-6040.	3.3	227
4	The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. Journal of Cell Biology, 2008, 181, 523-536.	2.3	209
5	Centrosome maturation: Measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1584-1588.	3.3	183
6	TOGp, the Human Homolog of XMAP215/Dis1, Is Required for Centrosome Integrity, Spindle Pole Organization, and Bipolar Spindle Assembly. Molecular Biology of the Cell, 2004, 15, 1580-1590.	0.9	178
7	Regulation of microtubule-associated proteins. International Review of Cytology, 2001, 210, 163-226.	6.2	175
8	Accessory protein regulation of microtubule dynamics throughout the cell cycle. Current Opinion in Cell Biology, 1999, 11, 134-141.	2.6	171
9	Dissociation of the Tubulin-sequestering and Microtubule Catastrophe-promoting Activities of Oncoprotein 18/Stathmin. Molecular Biology of the Cell, 1999, 10, 105-118.	0.9	160
10	Organization and Dynamics of Growing Microtubule Plus Ends during Early Mitosis. Molecular Biology of the Cell, 2003, 14, 916-925.	0.9	122
11	Regulation of microtubule dynamic instability. Cytoskeleton, 1993, 26, 275-281.	4.4	101
12	The Interaction of TOGp with Microtubules and Tubulin. Journal of Biological Chemistry, 2000, 275, 20748-20753.	1.6	88
13	XMAP215 is a long thin molecule that does not increase microtubule stiffness. Journal of Cell Science, 2001, 114, 3025-3033.	1.2	86
14	XMAP215 is a long thin molecule that does not increase microtubule stiffness. Journal of Cell Science, 2001, 114, 3025-33.	1.2	79
15	Phosphorylation by CDK1 regulates XMAP215 function in vitro. Cytoskeleton, 1999, 43, 310-321.	4.4	71
16	Infection with Replication-deficient Adenovirus Induces Changes in the Dynamic Instability of Host Cell Microtubules. Molecular Biology of the Cell, 2006, 17, 3557-3568.	0.9	60
17	Op18/Stathmin Mediates Multiple Region-Specific Tubulin and Microtubule-Regulating Activities. Journal of Cell Biology, 1999, 146, 1289-1302.	2.3	58
18	The Catastrophe-promoting Activity of Ectopic Op18/Stathmin Is Required for Disruption of Mitotic Spindles But Not Interphase Microtubules. Molecular Biology of the Cell, 2001, 12, 73-83.	0.9	57

#	Article	IF	CITATIONS
19	Dissecting the Nanoscale Distributions and Functions of Microtubule-End-Binding Proteins EB1 and ch-TOG in Interphase HeLa Cells. PLoS ONE, 2012, 7, e51442.	1.1	57
20	Purification of a WD Repeat Protein, EMAP, That Promotes Microtubule Dynamics through an Inhibition of Rescue. Journal of Biological Chemistry, 1998, 273, 9285-9291.	1.6	47
21	Human EFO1p exhibits acetyltransferase activity and is a unique combination of linker histone and Ctf7p/Eco1p chromatid cohesion establishment domains. Nucleic Acids Research, 2003, 31, 6334-6343.	6.5	47
22	Stathmin Regulates Centrosomal Nucleation of Microtubules and Tubulin Dimer/Polymer Partitioning. Molecular Biology of the Cell, 2009, 20, 3451-3458.	0.9	47
23	Regulation of Microtubule Dynamics by Bim1 and Bik1, the Budding Yeast Members of the EB1 and CLIP-170 Families of Plus-End Tracking Proteins. Molecular Biology of the Cell, 2010, 21, 2013-2023.	0.9	46
24	Identification of a novel tubulin-destabilizing protein related to the chaperone cofactor E. Journal of Cell Science, 2005, 118, 1197-1207.	1,2	41
25	TOGp regulates microtubule assembly and density during mitosis and contributes to chromosome directional instability. Cytoskeleton, 2009, 66, 535-545.	4.4	41
26	Mutations of Oncoprotein 18/Stathmin Identify Tubulin-Directed Regulatory Activities Distinct from Tubulin Association. Molecular and Cellular Biology, 1999, 19, 2242-2250.	1,1	38
27	Synthesis, characterization, crystal structures and biological activity of set of Cu(II) benzothiazole complexes: Artificial nucleases with cytotoxic activities. Journal of Inorganic Biochemistry, 2014, 137, 1-11.	1.5	29
28	The contributions of microtubule stability and dynamic instability to adenovirus nuclear localization efficiency. Cytoskeleton, 2007, 64, 675-689.	4.4	26
29	Fueled by microtubules: Does tubulin dimer/polymer partitioning regulate intracellular metabolism?. Cytoskeleton, 2012, 69, 133-143.	1.0	26
30	Stathmin and microtubules regulate mitotic entry in HeLa cells by controlling activation of both Aurora kinase A and Plk1. Molecular Biology of the Cell, 2013, 24, 3819-3831.	0.9	23
31	Stathmin/oncoprotein 18, a microtubule regulatory protein, is required for survival of both normal and cancer cell lines lacking the tumor suppressor, p53. Cancer Biology and Therapy, 2010, 9, 699-709.	1.5	22
32	Reorganization of paclitaxel-stabilized microtubule arrays at mitotic entry: roles of depolymerizing kinesins and severing proteins. Cancer Biology and Therapy, 2019, 20, 1337-1347.	1.5	21
33	The microtubule cytoskeleton is required for a G2 cell cycle delay in cancer cells lacking stathmin and p53. Cytoskeleton, 2012, 69, 278-289.	1.0	20
34	The chemical biology of Cu(II) complexes with imidazole or thiazole containing ligands: Synthesis, crystal structures and comparative biological activity. Journal of Inorganic Biochemistry, 2016, 157, 52-61.	1.5	20
35	Cellular Entry and Nuclear Targeting By a Highly Anionic Molecular Umbrella. Bioconjugate Chemistry, 2008, 19, 1510-1513.	1.8	18
36	Specific In Vivo Labeling of Tyrosinated α-Tubulin and Measurement of Microtubule Dynamics Using a GFP Tagged, Cytoplasmically Expressed Recombinant Antibody. PLoS ONE, 2013, 8, e59812.	1,1	17

#	Article	IF	CITATIONS
37	Detection of endoplasmic reticulum stress and the unfolded protein response in naturally-occurring endocrinopathic equine laminitis. BMC Veterinary Research, 2019, 15, 24.	0.7	17
38	Autonomous and phosphorylation-responsive microtubule-regulating activities of the N-terminus of Op18/stathmin. Journal of Cell Science, 2003, 116, 197-205.	1.2	15
39	Regulated assembly of the mitotic spindle: a perspective from two ends. Current Issues in Molecular Biology, 2003, 5, 99-112.	1.0	15
40	Gene expression profiles in mouse embryo fibroblasts lacking stathmin, a microtubule regulatory protein, reveal changes in the expression of genes contributing to cell motility. BMC Genomics, 2009, 10, 343.	1,2	13
41	Cell Division: Eg'ing on Microtubule Flux. Current Biology, 2004, 14, R1000-R1002.	1.8	11
42	Microtubule Assembly: Lattice GTP to the Rescue. Current Biology, 2009, 19, R174-R176.	1.8	10
43	Reversible Action of Diaminothiazoles in Cancer Cells Is Implicated by the Induction of a Fast Conformational Change of Tubulin and Suppression of Microtubule Dynamics. Molecular Cancer Therapeutics, 2014, 13, 179-189.	1.9	10
44	Monte Carlo simulations of microtubule arrays: The critical roles of rescue transitions, the cell boundary, and tubulin concentration in shaping microtubule distributions. PLoS ONE, 2018, 13, e0197538.	1.1	10
45	Cytoskeleton: Microtubules Born on the Run. Current Biology, 2005, 15, R551-R554.	1.8	9
46	Mechanisms blocking microtubule minus end assembly: Evidence for a tubulin dimer-binding protein., 1996, 34, 324-335.		8
47	The expression of equine keratins K42 and K124 is restricted to the hoof epidermal lamellae of Equus caballus. PLoS ONE, 2019, 14, e0219234.	1.1	8
48	Metal evaporation shadowing: A computer simulation. Journal of Electron Microscopy Technique, 1985, 2, 353-370.	1,1	7
49	Interleukin-17A pathway target genes are upregulated in Equus caballus supporting limb laminitis. PLoS ONE, 2020, 15, e0232920.	1.1	6
50	Continuous digital hypothermia reduces expression of keratin 17 and 1L-17A inflammatory pathway mediators in equine laminitis induced by hyperinsulinemia. Veterinary Immunology and Immunopathology, 2021, 241, 110326.	0.5	5
51	Positional analyses of BRCA1-dependent expression in Saccharomyces cerevisiae. Cell Cycle, 2008, 7, 3928-3934.	1.3	4
52	CAMSAPs Add to the Growing Microtubule Minus-End Story. Developmental Cell, 2014, 28, 221-222.	3.1	4
53	A novel cancer therapy approach targeting microtubule function. Cancer Biology and Therapy, 2006, 5, 1721-1723.	1.5	3
54	Tubulin Delivery: Polymerization Chaperones for Microtubule Assembly?. Developmental Cell, 2007, 13, 455-456.	3.1	3

#	Article	IF	CITATIONS
55	A delay prior to mitotic entry triggers caspase 8-dependent cell death in p53-deficient Hela and HCT-116 cells. Cell Cycle, 2015, 14, 1070-1081.	1.3	3
56	Mitosis: Riding the Protofilament Curl. Current Biology, 2006, 16, R214-R216.	1.8	0
57	Exploring stathmin control of cell survival through negative feedback of a JNK-dependent pathway . Matters, 0, , .	1.0	O