
Haiguang zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7687622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nature Communications, 2020, 11, 3530.	5.8	313
2	Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy and Environmental Science, 2021, 14, 396-406.	15.6	174
3	Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots. Nano Energy, 2018, 50, 756-765.	8.2	170
4	Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chemical Society Reviews, 2018, 47, 5866-5890.	18.7	169
5	Near Infrared, Highly Efficient Luminescent Solar Concentrators. Advanced Energy Materials, 2016, 6, 1501913.	10.2	161
6	Zeroâ€Dimensional Perovskite Nanocrystals for Efficient Luminescent Solar Concentrators. Advanced Functional Materials, 2019, 29, 1902262.	7.8	156
7	Perovskite quantum dots integrated in large-area luminescent solar concentrators. Nano Energy, 2017, 37, 214-223.	8.2	155
8	Colloidal carbon dots based highly stable luminescent solar concentrators. Nano Energy, 2018, 44, 378-387.	8.2	150
9	Tuning the Charge-Transfer Property of PbS-Quantum Dot/TiO ₂ -Nanobelt Nanohybrids via Quantum Confinement. Journal of Physical Chemistry Letters, 2010, 1, 1030-1035.	2.1	125
10	Towards controlled synthesis and better understanding of highly luminescent PbS/CdS core/shell quantum dots. Journal of Materials Chemistry, 2011, 21, 8898.	6.7	123
11	Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation. Nano Energy, 2017, 31, 441-449.	8.2	116
12	Absorption Enhancement in "Giant―Core/Alloyed-Shell Quantum Dots for Luminescent Solar Concentrator. Small, 2016, 12, 5354-5365.	5.2	112
13	Colloidal Quantum Dots for Solar Technologies. CheM, 2017, 3, 229-258.	5.8	107
14	Fabrication and physical and biological properties of fibrin gel derived from human plasma. Biomedical Materials (Bristol), 2008, 3, 015001.	1.7	103
15	High efficiency, Pt-free photoelectrochemical cells for solar hydrogen generation based on "giant― quantum dots. Nano Energy, 2016, 27, 265-274.	8.2	103
16	Anionic polypeptide poly(γ-glutamic acid)-functionalized magnetic Fe3O4-GO-(o-MWCNTs) hybrid nanocomposite for high-efficiency removal of Cd(II), Cu(II) and Ni(II) heavy metal ions. Chemical Engineering Journal, 2018, 346, 38-49.	6.6	103
17	Core/Shell Quantum Dots Solar Cells. Advanced Functional Materials, 2020, 30, 1908762.	7.8	98
18	Highly Stable Colloidal "Giant―Quantum Dots Sensitized Solar Cells. Advanced Functional Materials, 2017, 27, 1701468.	7.8	92

#	Article	IF	CITATIONS
19	Lanthanide Ion Doped Upconverting Nanoparticles: Synthesis, Structure and Properties. Small, 2016, 12, 3888-3907.	5.2	91
20	Nearâ€Infrared, Heavy Metalâ€Free Colloidal "Giant―Core/Shell Quantum Dots. Advanced Energy Materials, 2018, 8, 1701432.	10.2	90
21	Engineering interfacial structure in "Giant―PbS/CdS quantum dots for photoelectrochemical solar energy conversion. Nano Energy, 2016, 30, 531-541.	8.2	88
22	Controlled Fabrication of PbS Quantumâ€Dot/Carbonâ€Nanotube Nanoarchitecture and its Significant Contribution to Nearâ€Infrared Photonâ€toâ€Current Conversion. Advanced Functional Materials, 2011, 21, 4010-4018.	7.8	84
23	Two-step synthesis of high-quality water-soluble near-infrared emitting quantum dots via amphiphilic polymers. Chemical Communications, 2010, 46, 5301.	2.2	83
24	Hole-extraction and photostability enhancement in highly efficient inverted perovskite solar cells through carbon dot-based hybrid material. Nano Energy, 2019, 62, 781-790.	8.2	83
25	Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films. Nanoscale, 2014, 6, 7004-7011.	2.8	81
26	Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO2 photoanodes. Scientific Reports, 2016, 6, 23312.	1.6	80
27	Nearâ€Infrared Colloidal Quantum Dots for Efficient and Durable Photoelectrochemical Solarâ€Driven Hydrogen Production. Advanced Science, 2016, 3, 1500345.	5.6	76
28	Effect of CdS shell thickness on the optical properties of water-soluble, amphiphilic polymer-encapsulated PbS/CdS core/shell quantum dots. Journal of Materials Chemistry, 2011, 21, 17483.	6.7	75
29	Platinum Cluster/Carbon Quantum Dots Derived Graphene Heterostructured Carbon Nanofibers for Efficient and Durable Solarâ€Driven Electrochemical Hydrogen Evolution. Small Methods, 2022, 6, e2101470.	4.6	72
30	Silver Nanorice Structures: Oriented Attachment-Dominated Growth, High Environmental Sensitivity, and Real-Space Visualization of Multipolar Resonances. Chemistry of Materials, 2012, 24, 2339-2346.	3.2	71
31	Functionalized multi-wall carbon nanotubes/TiO ₂ composites as efficient photoanodes for dye sensitized solar cells. Journal of Materials Chemistry C, 2016, 4, 3555-3562.	2.7	68
32	Highly efficient tandem luminescent solar concentrators based on eco-friendly copper iodide based hybrid nanoparticles and carbon dots. Energy and Environmental Science, 2022, 15, 799-805.	15.6	68
33	3D Ordered Porous Hybrid of ZnSe/ <i>N</i> â€doped Carbon with Anomalously High Na ⁺ Mobility and Ultrathin Solid Electrolyte Interphase for Sodiumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2106194.	7.8	66
34	Stable tandem luminescent solar concentrators based on CdSe/CdS quantum dots and carbon dots. Journal of Materials Chemistry C, 2018, 6, 10059-10066.	2.7	65
35	Optoelectronic Properties in Nearâ€Infrared Colloidal Heterostructured Pyramidal "Giant―Core/Shell Quantum Dots. Advanced Science, 2018, 5, 1800656.	5.6	63
36	Colloidal carbon quantum dots as light absorber for efficient and stable ecofriendly photoelectrochemical hydrogen generation. Nano Energy, 2021, 86, 106122.	8.2	60

#	Article	IF	CITATIONS
37	Size Dependence of Temperature-Related Optical Properties of PbS and PbS/CdS Core/Shell Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 20585-20593.	1.5	54
38	Dual emission in asymmetric "giant―PbS/CdS/CdS core/shell/shell quantum dots. Nanoscale, 2016, 8, 4217-4226.	2.8	54
39	Bimodal Photoluminescence during the Growth of PbS Quantum Dots. Journal of Physical Chemistry C, 2009, 113, 6497-6504.	1.5	52
40	High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots. Nano Energy, 2019, 60, 119-126.	8.2	52
41	Structure/Property Relations in "Giant―Semiconductor Nanocrystals: Opportunities in Photonics and Electronics. Accounts of Chemical Research, 2018, 51, 609-618.	7.6	51
42	Red and yellow emissive carbon dots integrated tandem luminescent solar concentrators with significantly improved efficiency. Nanoscale, 2021, 13, 9561-9569.	2.8	51
43	Quantum Dotsâ€Based Photoelectrochemical Hydrogen Evolution from Water Splitting. Advanced Energy Materials, 2021, 11, 2003233.	10.2	51
44	Ultrasmall PbS quantum dots: a facile and greener synthetic route and their high performance in luminescent solar concentrators. Journal of Materials Chemistry A, 2017, 5, 10250-10260.	5.2	48
45	Concentration-Dependent Photoinduced Photoluminescence Enhancement in Colloidal PbS Quantum Dot Solution. Journal of Physical Chemistry C, 2010, 114, 10153-10159.	1.5	47
46	Investigating photoinduced charge transfer in double- and single-emission PbS@CdS core@shell quantum dots. Nanoscale, 2014, 6, 215-225.	2.8	46
47	Efficient solar-driven hydrogen generation using colloidal heterostructured quantum dots. Journal of Materials Chemistry A, 2019, 7, 14079-14088.	5.2	46
48	Enhanced conversion efficiency in Si solar cells employing photoluminescent down-shifting CdSe/CdS core/shell quantum dots. Scientific Reports, 2017, 7, 14104.	1.6	44
49	Heterostructured quantum dot architectures for efficient and stable photoelectrochemical hydrogen production. Journal of Materials Chemistry A, 2018, 6, 6822-6829.	5.2	44
50	Interfacial engineering in colloidal "giant―quantum dots for high-performance photovoltaics. Nano Energy, 2019, 55, 377-388.	8.2	44
51	Asymmetric Silver "Nanocarrot―Structures: Solution Synthesis and Their Asymmetric Plasmonic Resonances. Journal of the American Chemical Society, 2013, 135, 9616-9619.	6.6	43
52	Ultrasensitive, Biocompatible, Selfâ€Calibrating, Multiparametric Temperature Sensors. Small, 2015, 11, 5741-5746.	5.2	43
53	Efficient and stable photoelectrochemical hydrogen generation using optimized colloidal heterostructured quantum dots. Nano Energy, 2021, 79, 105416.	8.2	43
54	InÂvitro and inÂvivo biological performance of collagen-chitosan/silicone membrane bilayer dermal equivalent. Journal of Materials Science: Materials in Medicine, 2007, 18, 2185-2191.	1.7	41

#	Article	IF	CITATIONS
55	A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: fabrication and an inÂvitro evaluation. Journal of Materials Science: Materials in Medicine, 2009, 20, 135-143.	1.7	40
56	Synergistic Effect of Plasmonic Gold Nanoparticles Decorated Carbon Nanotubes in Quantum Dots/TiO ₂ for Optoelectronic Devices. Advanced Science, 2020, 7, 2001864.	5.6	39
57	Hybrid TiO2-Graphene nanoribbon photoanodes to improve the photoconversion efficiency of dye sensitized solar cells. Journal of Power Sources, 2018, 396, 566-573.	4.0	38
58	Highly stable photoelectrochemical cells for hydrogen production using a SnO ₂ –TiO ₂ /quantum dot heterostructured photoanode. Nanoscale, 2018, 10, 15273-15284.	2.8	38
59	High-performance laminated luminescent solar concentrators based on colloidal carbon quantum dots. Nanoscale Advances, 2019, 1, 4888-4894.	2.2	38
60	Effect of Different Types of Surface Ligands on the Structure and Optical Property of Water-Soluble PbS Quantum Dots Encapsulated by Amphiphilic Polymers. Journal of Physical Chemistry C, 2011, 115, 1620-1626.	1.5	37
61	Microwave-assisted cation exchange toward synthesis of near-infrared emitting PbS/CdS core/shell quantum dots with significantly improved quantum yields through a uniform growth path. Nanoscale, 2013, 5, 7800.	2.8	37
62	Earth abundant colloidal carbon quantum dots for luminescent solar concentrators. Materials Advances, 2020, 1, 119-138.	2.6	37
63	Platinum/Palladium hollow nanofibers as high-efficiency counter electrodes for enhanced charge transfer. Journal of Power Sources, 2016, 335, 138-145.	4.0	36
64	Highly efficient and stable spray assisted nanostructured Cu2S/Carbon paper counter electrode for quantum dots sensitized solar cells. Journal of Power Sources, 2019, 436, 226849.	4.0	36
65	Refractive index dependent optical property of carbon dots integrated luminescent solar concentrators. Journal of Luminescence, 2019, 211, 150-156.	1.5	36
66	Air-processed depleted bulk heterojunction solar cells based on PbS/CdS core–shell quantum dots and TiO2 nanorod arrays. Solar Energy Materials and Solar Cells, 2014, 124, 67-74.	3.0	35
67	Visible and Near-Infrared, Multiparametric, Ultrasensitive Nanothermometer Based on Dual-Emission Colloidal Quantum Dots. ACS Photonics, 2019, 6, 2479-2486.	3.2	35
68	Stable metal-halide perovskites for luminescent solar concentrators of real-device integration. Nano Energy, 2021, 85, 105960.	8.2	34
69	A colloidal heterostructured quantum dot sensitized carbon nanotube–TiO ₂ hybrid photoanode for high efficiency hydrogen generation. Nanoscale Horizons, 2019, 4, 404-414.	4.1	33
70	Environmentally friendly Mn-alloyed core/shell quantum dots for high-efficiency photoelectrochemical cells. Journal of Materials Chemistry A, 2020, 8, 10736-10741.	5.2	33
71	Hybrid graphene/metal oxide anodes for efficient and stable dye sensitized solar cell. Electrochimica Acta, 2020, 349, 136409.	2.6	32
72	Concus Finn Capillary driven fast viscous oil-spills removal by superhydrophobic cruciate polyester fibers. Journal of Hazardous Materials, 2021, 417, 126133.	6.5	31

#	Article	IF	CITATIONS
73	Dynamics of semiconducting nanocrystal uptake into mesoporous TiO ₂ thick films by electrophoretic deposition. Journal of Materials Chemistry A, 2015, 3, 847-856.	5.2	30
74	Ultrasmall Nanoplatelets: The Ultimate Tuning of Optoelectronic Properties. Advanced Energy Materials, 2017, 7, 1602728.	10.2	30
75	Colloidal thick-shell pyramidal quantum dots for efficient hydrogen production. Nano Energy, 2018, 53, 116-124.	8.2	30
76	A stretchable laminated GNRs/BNNSs nanocomposite with high electrical and thermal conductivity. Nanoscale, 2019, 11, 20648-20658.	2.8	30
77	In-situ growth of graphene on carbon nanofiber from lignin. Carbon, 2020, 169, 446-454.	5.4	30
78	Fabrication and properties of mineralized collagen hitosan/hydroxyapatite scaffolds. Polymers for Advanced Technologies, 2008, 19, 1590-1596.	1.6	27
79	Self-selective recovery of photoluminescence in amphiphilic polymer encapsulated PbS quantum dots. Physical Chemistry Chemical Physics, 2010, 12, 14754.	1.3	27
80	Red and green-emitting biocompatible carbon quantum dots for efficient tandem luminescent solar concentrators. Journal of Materials Chemistry C, 2021, 9, 12255-12262.	2.7	27
81	Effect of Redox Reaction Products on the Luminescence Switching Behavior in CePO ₄ :Tb Nanorods. Journal of Physical Chemistry C, 2013, 117, 10031-10038.	1.5	26
82	A composite scaffold of PLGA microspheres/fibrin gel for cartilage tissue engineering: Fabrication, physical properties, and cell responsiveness. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 240-249.	1.6	25
83	Green synthesis of near infrared core/shell quantum dots for photocatalytic hydrogen production. Nanotechnology, 2016, 27, 495405.	1.3	25
84	Integration of photoelectrochemical devices and luminescent solar concentrators based on giant quantum dots for highly stable hydrogen generation. Journal of Materials Chemistry A, 2019, 7, 18529-18537.	5.2	25
85	1D/2D Cobaltâ€Based Nanohybrids as Electrocatalysts for Hydrogen Generation. Advanced Functional Materials, 2020, 30, 1908467.	7.8	25
86	Role of refractive index in highly efficient laminated luminescent solar concentrators. Nano Energy, 2020, 70, 104470.	8.2	25
87	Tailoring the Heterostructure of Colloidal Quantum Dots for Ratiometric Optical Nanothermometry. Small, 2020, 16, e2000804.	5.2	24
88	Ceria doping boosts methylene blue photodegradation in titania nanostructures. Materials Chemistry Frontiers, 2021, 5, 4138-4152.	3.2	23
89	Nanofiber-supported CuS nanoplatelets as high efficiency counter electrodes for quantum dot-based photoelectrochemical hydrogen production. Materials Chemistry Frontiers, 2017, 1, 65-72.	3.2	22
90	Near-infrared CdSexTe1-x@CdS "giant―quantum dots for efficient photoelectrochemical hydrogen generation. International Journal of Hydrogen Energy, 2018, 43, 22064-22074.	3.8	22

#	Article	IF	CITATIONS
91	Tailoring the interfacial structure of colloidal "giant―quantum dots for optoelectronic applications. Nanoscale, 2018, 10, 17189-17197.	2.8	22
92	CuS/Graphene Nanocomposite as a Transparent Conducting Oxide and Pt-Free Counter Electrode for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2019, 166, H3065-H3073.	1.3	22
93	Highly efficient ratiometric nanothermometers based on colloidal carbon quantum dots. Journal of Materials Chemistry B, 2021, 9, 4111-4119.	2.9	22
94	Graphene oxide/cobalt-based nanohybrid electrodes for robust hydrogen generation. Applied Catalysis B: Environmental, 2019, 245, 167-176.	10.8	21
95	Silver nanoparticle film induced photoluminescence enhancement of near-infrared emitting PbS and PbS/CdS core/shell quantum dots: observation of different enhancement mechanisms. Nanoscale, 2016, 8, 4882-4887.	2.8	20
96	Near-Infrared Colloidal Manganese-Doped Quantum Dots: Photoluminescence Mechanism and Temperature Response. ACS Photonics, 2019, 6, 2421-2431.	3.2	20
97	Enhanced Photocurrent Generation in Protonâ€Irradiated "Giant―CdSe/CdS Core/Shell Quantum Dots. Advanced Functional Materials, 2019, 29, 1904501.	7.8	20
98	Hybrid surface passivation of PbS/CdS quantum dots for efficient photoelectrochemical hydrogen generation. Applied Surface Science, 2020, 530, 147252.	3.1	20
99	Gold nanoparticle decorated carbon nanotube nanocomposite for dye-sensitized solar cell performance and stability enhancement. Chemical Engineering Journal, 2021, 421, 127756.	6.6	20
100	Ultrafast exciton relaxation dynamics of PbS and core/shell PbS/CdS quantum dots. Science China Chemistry, 2011, 54, 2009-2015.	4.2	18
101	Towards Longâ€Term Thermal Stability of Dyeâ€Sensitized Solar Cells Using Multiwalled Carbon Nanotubes. ChemPlusChem, 2018, 83, 682-690.	1.3	18
102	Direct Measurement of Electronic Band Structure in Single Quantum Dots of Metal Chalcogenide Composites. Small, 2018, 14, e1801668.	5.2	18
103	Synthesis of highly efficient Cu2ZnSnSxSe4â^'x (CZTSSe) nanosheet electrocatalyst for dye-sensitized solar cells. Electrochimica Acta, 2020, 340, 135954.	2.6	18
104	Fabrication and properties of injectable β-tricalcium phosphate particles/fibrin gel composite scaffolds for bone tissue engineering. Materials Science and Engineering C, 2009, 29, 836-842.	3.8	17
105	Controlled synthesis of near-infrared quantum dots for optoelectronic devices. Nanoscale, 2017, 9, 16843-16851.	2.8	17
106	Role of Carbon Nanotubes to Enhance the Long-Term Stability of Dye-Sensitized Solar Cells. ACS Photonics, 2020, 7, 653-664.	3.2	17
107	Efficient and stable hydrogen evolution based on earth-abundant SnSe nanocrystals. Applied Catalysis B: Environmental, 2020, 264, 118526.	10.8	16
108	Surface chemistry in calcium capped carbon quantum dots. Nanoscale, 2021, 13, 12149-12156.	2.8	16

#	Article	IF	CITATIONS
109	Graphene nanoribbon-TiO2-quantum dots hybrid photoanode to boost the performance of photoelectrochemical for hydrogen generation. Catalysis Today, 2020, 340, 161-169.	2.2	15
110	Dual emission and optical gain in PbS/CdS nanocrystals: Role of shell volume and of core/shell interface. Physical Review B, 2017, 96, .	1.1	14
111	Ultra-small colloidal heavy-metal-free nanoplatelets for efficient hydrogen generation. Applied Catalysis B: Environmental, 2019, 250, 234-241.	10.8	14
112	Near-infrared heavy-metal-free SnSe/ZnSe quantum dots for efficient photoelectrochemical hydrogen generation. Nanoscale, 2021, 13, 3519-3527.	2.8	14
113	Role of Interfacial Engineering of "Giant―Core–Shell Quantum Dots. ACS Applied Energy Materials, 2022, 5, 1447-1459.	2.5	14
114	Towards understanding the unusual photoluminescence intensity variation of ultrasmall colloidal PbS quantum dots with the formation of a thin CdS shell. Physical Chemistry Chemical Physics, 2016, 18, 31828-31835.	1.3	11
115	Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors. Applied Sciences (Switzerland), 2020, 10, 2767.	1.3	11
116	Structural effect of Low-dimensional carbon nanostructures on Long-term stability of dye sensitized solar cells. Chemical Engineering Journal, 2022, 435, 135037.	6.6	11
117	Heterostructured core/gradient multi-shell quantum dots for high-performance and durable photoelectrochemical hydrogen generation. Nano Energy, 2022, 100, 107524.	8.2	11
118	Band engineering enables highly efficient and stable photoelectrochemical hydrogen evolution. Chemical Engineering Journal, 2022, 450, 137813.	6.6	11
119	Low-Cost, Air-Processed Quantum Dot Solar Cells via Diffusion-Controlled Synthesis. ACS Applied Materials & Interfaces, 2020, 12, 36301-36310.	4.0	9
120	Electron transfer in a semiconductor heterostructure interface through electrophoretic deposition and a linker-assisted method. CrystEngComm, 2020, 22, 1664-1673.	1.3	8
121	Quantum Dots Solar Cells: Core/Shell Quantum Dots Solar Cells (Adv. Funct. Mater. 13/2020). Advanced Functional Materials, 2020, 30, 2070086.	7.8	7
122	Thermal effect on the efficiency and stability of luminescent solar concentrators based on colloidal quantum dots. Journal of Materials Chemistry C, 2021, 9, 5723-5731.	2.7	7
123	Ligand and Precursor Effects on the Synthesis and Optical Properties of PbS Quantum Dots. Journal of Nanoscience and Nanotechnology, 2010, 10, 4897-4905.	0.9	6
124	Epitaxial growth and defect repair of heterostructured CulnSe _x S _{2â^'x} /CdSeS/CdS quantum dots. Nanoscale, 2019, 11, 19529-19535.	2.8	3
125	Rational synthesis of novel "giant―CuInTeSe/CdS core/shell quantum dots for optoelectronics. Nanoscale, 2021, 13, 15301-15310.	2.8	3
126	Ultra-small-sized multi-element metal oxide nanofibers: an efficient electrocatalyst for hydrogen evolution. Nanoscale Advances, 2022, 4, 1758-1769.	2.2	3

#	Article	IF	CITATIONS
127	Quantum Dots: Quantum Dotsâ€Based Photoelectrochemical Hydrogen Evolution from Water Splitting (Adv. Energy Mater. 12/2021). Advanced Energy Materials, 2021, 11, 2170047.	10.2	2
128	Highly efficient optoelectronic devices based on colloidal heterostructured quantum dots. APL Materials, 2021, 9, 050701.	2.2	2
129	3D Ordered Porous Hybrid of ZnSe/ <i>N</i> â€doped Carbon with Anomalously High Na ⁺ Mobility and Ultrathin Solid Electrolyte Interphase for Sodiumâ€ion Batteries (Adv. Funct. Mater.) Tj ETQq1 1 0.7	'847381.4 rgl	3T‡Overlock
130	Luminescent Solar Concentrators: Near Infrared, Highly Efficient Luminescent Solar Concentrators (Adv. Energy Mater. 11/2016). Advanced Energy Materials, 2016, 6, .	10.2	1
131	Solar Concentrators: Absorption Enhancement in "Giant―Core/Alloyed-Shell Quantum Dots for Luminescent Solar Concentrator (Small 38/2016). Small, 2016, 12, 5368-5368.	5.2	1
132	Temperature Sensors: Ultrasensitive, Biocompatible, Self-Calibrating, Multiparametric Temperature Sensors (Small 43/2015). Small, 2015, 11, 5740-5740.	5.2	0
133	Quantum Dots: Nearâ€Infrared Colloidal Quantum Dots for Efficient and Durable Photoelectrochemical Solarâ€Driven Hydrogen Production (Adv. Sci. 3/2016). Advanced Science, 2016, 3, .	5.6	0
134	Core/Shell Quantum-Dot-Based Luminescent Solar Concentrators. Lecture Notes in Nanoscale Science and Technology, 2020, , 287-314.	0.4	0
135	(Invited) Ultrafast Spectroscopy in Semiconductor Nanocrystals: Revealing the Origin of Single Vs Double Emission, of Optical Gain and the Role of Dopants. ECS Meeting Abstracts, 2022, MA2022-01, 1104-1104.	0.0	0