Abhijit Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7687357/publications.pdf Version: 2024-02-01

Авниит Міснрл

#	Article	IF	CITATIONS
1	Exploring potential of glass surface immobilized short antimicrobial peptide (AMP) as antibacterial coatings. Materials Today: Proceedings, 2022, 49, 1367-1377.	0.9	4
2	Rutin-loaded polymeric nanorods alleviate nephrolithiasis by inhibiting inflammation and oxidative stress <i>in vivo</i> and <i>in vitro</i> . Food and Function, 2022, 13, 3632-3648.	2.1	4
3	Co-delivery nanosystem of Epigallocatechin Gallate and Rutin for anticancer and antibacterial activities. Journal of Drug Delivery Science and Technology, 2022, 70, 103191.	1.4	5
4	The Effect of Alkali Treatment on Pineapple Leaf Fibers (PALF) on the Performance of PALF Reinforced Rice Starch Biocomposites. Journal of Natural Fibers, 2022, 19, 14235-14249.	1.7	5
5	Intracellular Bacterial Targeting by a Thiazolyl Benzenesulfonamide and Octaarginine Peptide Complex. ACS Applied Bio Materials, 2022, 5, 3257-3268.	2.3	3
6	Methacrylamide based antibiotic polymers with no detectable bacterial resistance. Soft Matter, 2021, 17, 3404-3416.	1.2	4
7	Material Selection for Plastic Products. , 2021, , .		Ο
8	Emergent antibacterial activity of N-(thiazol-2-yl)benzenesulfonamides in conjunction with cell-penetrating octaarginine. RSC Advances, 2021, 11, 28581-28592.	1.7	3
9	Effect of antimicrobial peptide (AMP)–tethered stainless steel surfaces on the bacterial membrane. Materials Today Chemistry, 2021, 21, 100541.	1.7	5
10	Enhanced cytocompatibility and mechanical properties of electron beam melted Ti-6Al-4V by friction stir processing. Journal of Manufacturing Processes, 2021, 72, 400-410.	2.8	6
11	Designing a short, potent, pore-forming antimicrobial peptide. Materials Today: Proceedings, 2021, , .	0.9	1
12	Experimental and simulation studies reveal mechanism of action of human defensin derivatives. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1864, 183824.	1.4	2
13	Optimal Balance of Hydrophobic Content and Degree of Polymerization Results in a Potent Membrane-Targeting Antibacterial Polymer. ACS Omega, 2021, 6, 34724-34735.	1.6	12
14	Enhancing Aqueous Solubility and Antibacterial Activity of Curcumin by Complexing with Cell-Penetrating Octaarginine. ACS Omega, 2020, 5, 19004-19013.	1.6	24
15	Environmentally Benign Nanoantibiotics with a Built-in Deactivation Switch Responsive to Natural Habitats. Biomacromolecules, 2020, 21, 2187-2198.	2.6	16
16	A facile preparation of rutin nanoparticles and its effects on controlled growth and morphology of calcium oxalate crystals. Journal of Crystal Growth, 2020, 540, 125635.	0.7	14
17	Modulating Surface Energy and Surface Roughness for Inhibiting Microbial Growth. Materials Horizons, 2020, , 109-121.	0.3	4
18	Surface immobilization of a short antimicrobial peptide (AMP) as an antibacterial coating. Materialia, 2019, 6, 100350.	1.3	19

Abhijit Mishra

#	Article	IF	CITATIONS
19	Generalized wavelet neural networks for evapotranspiration modeling in India. ISH Journal of Hydraulic Engineering, 2019, 25, 119-131.	1.1	13
20	Antibacterial Polymers – A Mini Review. Materials Today: Proceedings, 2018, 5, 17156-17161.	0.9	36
21	Synthesis of Lysine Mimicking Membrane Active Antimicrobial Polymers. Materials Horizons, 2018, , 29-37.	0.3	о
22	Antibacterial Activity of Antimicrobial Peptide (AMP) Grafted Polystyrene Surface. Materials Horizons, 2018, , 39-46.	0.3	0
23	Antibacterial properties of human beta defensin-3 derivative: CHRG01. Journal of Biosciences, 2018, 43, 707-715.	0.5	10
24	Antibacterial properties of human beta defensin-3 derivative: CHRG01. Journal of Biosciences, 2018, 43, 707-715.	0.5	5
25	Structural Transitions in Lipid Membranes. Behavior Research Methods, 2014, 19, 103-137.	2.3	Ο
26	Influenza Virus A M2 Protein Generates Negative Gaussian Membrane Curvature Necessary for Budding and Scission. Journal of the American Chemical Society, 2013, 135, 13710-13719.	6.6	101
27	Arginine in α-Defensins. Journal of Biological Chemistry, 2012, 287, 21866-21872.	1.6	51
28	Grain storage: methods and measurements. Quality Assurance and Safety of Crops and Foods, 2012, 4, 144-144.	1.8	6
29	Detecting rainfall trends in twentieth century (1871–2006) over Orissa State, India. Climatic Change, 2012, 111, 801-817.	1.7	93
30	Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16883-16888.	3.3	287
31	Criterion for Amino Acid Composition of Defensins and Antimicrobial Peptides Based on Geometry of Membrane Destabilization. Journal of the American Chemical Society, 2011, 133, 6720-6727.	6.6	181
32	Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential. Proceedings of the United States of America, 2011, 108, 15978-15983.	3.3	89
33	Small-Angle X-ray Scattering Studies of Peptide–Lipid Interactions Using the Mouse Paneth Cell α-Defensin Cryptdin-4. Methods in Enzymology, 2011, 492, 127-149.	0.4	5
34	Arginineâ€rich cellâ€penetrating peptides. FEBS Letters, 2010, 584, 1806-1813.	1.3	433
35	Optical Properties in Nanofluids of Gold Nanoparticles in Poly(vinylpyrrolidone). Journal of Nanoscience and Nanotechnology, 2009, 9, 4342-4347.	0.9	15
36	Reversible Cell‧pecific Drug Delivery with Aptamerâ€Functionalized Liposomes. Angewandte Chemie - International Edition, 2009, 48, 6494-6498.	7.2	343

Abhijit Mishra

#	Article	IF	CITATIONS
37	Inorganic Mercury Detection and Controlled Release of Chelating Agents from Ion-Responsive Liposomes. Chemistry and Biology, 2009, 16, 937-942.	6.2	46
38	Dynamic Light Scattering and Optical Absorption in Biological Nanofluids of Gold Nanoparticles in Poly(vinyl pyrrolidone) Molecules. Journal of Physical Chemistry C, 2009, 113, 6976-6982.	1.5	45
39	Selective Light Emission in Nonbonding Electron Transitions in Poly(vinyl pyrrolidone) Molecules on Spin-Coating in Thin Layers. Journal of Physical Chemistry A, 2009, 113, 14067-14073.	1.1	16
40	HIV TAT Forms Pores in Membranes by Inducing Saddleâ€5play Curvature: Potential Role of Bidentate Hydrogen Bonding. Angewandte Chemie - International Edition, 2008, 47, 2986-2989.	7.2	141
41	Surface enhanced optical absorption and photoluminescence in nonbonding electrons in small poly(vinylpyrrolidone) molecules. Journal of Chemical Physics, 2007, 126, 084902.	1.2	12
42	Synthetic Antimicrobial Oligomers Induce a Composition-Dependent Topological Transition in Membranes. Journal of the American Chemical Society, 2007, 129, 12141-12147.	6.6	123
43	A NEW FERROELECTRIC PbZr0.52Ti0.48O3 POLYMORPH OF NANOPARTICLES. Modern Physics Letters B, 2006, 20, 159-167.	1.0	1