
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7686998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The pain matrix reloaded. Progress in Neurobiology, 2011, 93, 111-124.	2.8	721
2	From the neuromatrix to the pain matrix (and back). Experimental Brain Research, 2010, 205, 1-12.	0.7	466
3	A multisensory investigation of the functional significance of the "pain matrix― Neurolmage, 2011, 54, 2237-2249.	2.1	446
4	Tagging the Neuronal Entrainment to Beat and Meter. Journal of Neuroscience, 2011, 31, 10234-10240.	1.7	411
5	Across-trial averaging of event-related EEG responses and beyond. Magnetic Resonance Imaging, 2008, 26, 1041-1054.	1.0	345
6	Determinants of Laser-Evoked EEG Responses: Pain Perception or Stimulus Saliency?. Journal of Neurophysiology, 2008, 100, 815-828.	0.9	340
7	Nociceptive Laser-Evoked Brain Potentials Do Not Reflect Nociceptive-Specific Neural Activity. Journal of Neurophysiology, 2009, 101, 3258-3269.	0.9	307
8	Gamma-Band Oscillations in the Primary Somatosensory Cortex—A Direct and Obligatory Correlate of Subjective Pain Intensity. Journal of Neuroscience, 2012, 32, 7429-7438.	1.7	273
9	Selective Neuronal Entrainment to the Beat and Meter Embedded in a Musical Rhythm. Journal of Neuroscience, 2012, 32, 17572-17581.	1.7	240
10	How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation. Neurophysiologie Clinique, 2003, 33, 269-277.	1.0	199
11	Non-phase locked electroencephalogram (EEG) responses to CO2 laser skin stimulations may reflect central interactions between Aâˆ,- and C-fibre afferent volleys. Clinical Neurophysiology, 2003, 114, 710-722.	0.7	172
12	Low intensity intra-epidermal electrical stimulation can activate Aδ-nociceptors selectively. Pain, 2010, 150, 199-207.	2.0	171
13	The search for pain biomarkers in the human brain. Brain, 2018, 141, 3290-3307.	3.7	170
14	Beyond metaphor: contrasting mechanisms of social and physical pain. Trends in Cognitive Sciences, 2013, 17, 371-378.	4.0	156
15	A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials. Neurolmage, 2010, 50, 99-111.	2.1	148
16	Olfactory Function and Olfactory Bulb Volume in Patients with Postinfectious Olfactory Loss. Laryngoscope, 2006, 116, 436-439.	1.1	146
17	Primary sensory cortices contain distinguishable spatial patterns of activity for each sense. Nature Communications, 2013, 4, 1979.	5.8	135
18	Characterizing the Cortical Activity through Which Pain Emerges from Nociception. Journal of Neuroscience, 2009, 29, 7909-7916.	1.7	134

#	Article	IF	CITATIONS
19	Single-trial time–frequency analysis of electrocortical signals: Baseline correction and beyond. NeuroImage, 2014, 84, 876-887.	2.1	107
20	Diagnostic colours contribute to the early stages of scene categorization: Behavioural and neurophysiological evidence. Visual Cognition, 2005, 12, 878-892.	0.9	99
21	Retronasal and Orthonasal Olfactory Function in Relation to Olfactory Bulb Volume in Patients With Posttraumatic Loss of Smell. Laryngoscope, 2006, 116, 901-905.	1.1	97
22	Thermal Detection Thresholds of Aδ- and C-Fibre Afferents Activated by Brief CO2 Laser Pulses Applied onto the Human Hairy Skin. PLoS ONE, 2012, 7, e35817.	1.1	97
23	Capturing with EEG the Neural Entrainment and Coupling Underlying Sensorimotor Synchronization to the Beat. Cerebral Cortex, 2015, 25, 736-747.	1.6	93
24	Novelty is not enough: laser-evoked potentials are determined by stimulus saliency, not absolute novelty. Journal of Neurophysiology, 2013, 109, 692-701.	0.9	86
25	Bypassing Primary Sensory Cortices—A Direct Thalamocortical Pathway for Transmitting Salient Sensory Information. Cerebral Cortex, 2013, 23, 1-11.	1.6	83
26	Nociceptive Steady-State Evoked Potentials Elicited by Rapid Periodic Thermal Stimulation of Cutaneous Nociceptors. Journal of Neuroscience, 2011, 31, 6079-6087.	1.7	76
27	Parallel Processing of Nociceptive and Non-nociceptive Somatosensory Information in the Human Primary and Secondary Somatosensory Cortices: Evidence from Dynamic Causal Modeling of Functional Magnetic Resonance Imaging Data. Journal of Neuroscience, 2011, 31, 8976-8985.	1.7	74
28	Steady-state evoked potentials as an index of multisensory temporal binding. NeuroImage, 2012, 60, 21-28.	2.1	74
29	Assessment ofÂolfactory andÂtrigeminal function using chemosensory event-related potentials. Neurophysiologie Clinique, 2006, 36, 53-62.	1.0	72
30	Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies. Cortex, 2017, 89, 120-134.	1.1	71
31	The Enhancement of the N1 Wave Elicited by Sensory Stimuli Presented at Very Short Inter-Stimulus Intervals Is a General Feature across Sensory Systems. PLoS ONE, 2008, 3, e3929.	1.1	65
32	Dishabituation of Laser-evoked EEG Responses: Dissecting the Effect of Certain and Uncertain Changes in Stimulus Modality. Journal of Cognitive Neuroscience, 2011, 23, 2822-2837.	1.1	62
33	Body Movement Selectively Shapes the Neural Representation of Musical Rhythms. Psychological Science, 2014, 25, 2147-2159.	1.8	62
34	The role of working memory in the attentional control of pain. Pain, 2011, 152, 453-459.	2.0	60
35	Nociceptive Local Field Potentials Recorded from the Human Insula Are Not Specific for Nociception. PLoS Biology, 2016, 14, e1002345.	2.6	60
36	High-frequency electrical stimulation of the human skin induces heterotopical mechanical hyperalgesia, heat hyperalgesia, and enhanced responses to nonnociceptive vibrotactile input. Journal of Neurophysiology, 2014, 111, 1564-1573.	0.9	58

#	Article	IF	CITATIONS
37	Touch uses frictional cues to discriminate flat materials. Scientific Reports, 2016, 6, 25553.	1.6	57
38	Time-Frequency Analysis of Chemosensory Event-Related Potentials to Characterize the Cortical Representation of Odors in Humans. PLoS ONE, 2012, 7, e33221.	1.1	57
39	Olfactory Function Assessed With Orthonasal and Retronasal Testing, Olfactory Bulb Volume, and Chemosensory Event–Related Potentials. JAMA Otolaryngology, 2006, 132, 1346.	1.5	56
40	Stimulus Novelty, and Not Neural Refractoriness, Explains the Repetition Suppression of Laser-Evoked Potentials. Journal of Neurophysiology, 2010, 104, 2116-2124.	0.9	55
41	Human surrogate models of central sensitization: A critical review and practical guide. European Journal of Pain, 2021, 25, 1389-1428.	1.4	51
42	The tactile perception of transient changes in friction. Journal of the Royal Society Interface, 2017, 14, 20170641.	1.5	50
43	Mechanisms Linking Olfactory Impairment and Risk of Mortality. Frontiers in Neuroscience, 2020, 14, 140.	1.4	49
44	Taking into account latency, amplitude, and morphology: improved estimation of single-trial ERPs by wavelet filtering and multiple linear regression. Journal of Neurophysiology, 2011, 106, 3216-3229.	0.9	48
45	Gamma-Band Oscillations Preferential for Nociception can be Recorded in the Human Insula. Cerebral Cortex, 2018, 28, 3650-3664.	1.6	48
46	Characterizing pinprick-evoked brain potentials before and after experimentally induced secondary hyperalgesia. Journal of Neurophysiology, 2015, 114, 2672-2681.	0.9	46
47	Shielding cognition from nociception with working memory. Cortex, 2013, 49, 1922-1934.	1.1	45
48	Refractoriness cannot explain why C-fiber laser-evoked brain potentials are recorded only if concomitant Al´-fiber activation is avoided. Pain, 2004, 112, 16-26.	2.0	44
49	Cortical interactions and integration of nociceptive and non-nociceptive somatosensory inputs in humans. Neuroscience, 2007, 150, 72-81.	1.1	43
50	Spatial Patterns of Brain Activity Preferentially Reflecting Transient Pain and Stimulus Intensity. Cerebral Cortex, 2019, 29, 2211-2227.	1.6	43
51	Controlling Attention to Nociceptive Stimuli with Working Memory. PLoS ONE, 2011, 6, e20926.	1.1	42
52	Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain. Neurophysiologie Clinique, 2012, 42, 315-323.	1.0	41
53	Short trains of intra-epidermal electrical stimulation to elicit reliable behavioral and electrophysiological responses to the selective activation of nociceptors in humans. Neuroscience Letters, 2014, 561, 69-73.	1.0	41
54	Central Sensitization of Mechanical Nociceptive Pathways Is Associated with a Long-Lasting Increase of Pinprick-Evoked Brain Potentials. Frontiers in Human Neuroscience, 2016, 10, 531.	1.0	40

#	Article	IF	CITATIONS
55	The primary somatosensory cortex and the insula contribute differently to the processing of transient and sustained nociceptive and nonâ€nociceptive somatosensory inputs. Human Brain Mapping, 2015, 36, 4346-4360.	1.9	37
56	Event-related brain potentials elicited by high-speed cooling of the skin: A robust and non-painful method to assess the spinothalamic system in humans. Clinical Neurophysiology, 2018, 129, 1011-1019.	0.7	37
57	Clinical Significance of Olfactory Event-Related Potentials Related to Orthonasal and Retronasal Olfactory Testing. Laryngoscope, 2007, 117, 1096-1101.	1.1	36
58	Steady-state evoked potentials to tag specific components of nociceptive cortical processing. NeuroImage, 2012, 60, 571-581.	2.1	36
59	Deep continuous theta burst stimulation of the operculoâ€insular cortex selectively affects AÎ′â€fibre heat pain. Journal of Physiology, 2018, 596, 4767-4787.	1.3	36
60	EEG and laser stimulation as tools for pain research. Current Opinion in Investigational Drugs, 2005, 6, 58-64.	2.3	35
61	Looking at the hand modulates the brain responses to nociceptive and nonâ€nociceptive somatosensory stimuli but does not necessarily modulate their perception. Psychophysiology, 2015, 52, 1010-1018.	1.2	33
62	Multiple linear regression to estimate time-frequency electrophysiological responses in single trials. NeuroImage, 2015, 111, 442-453.	2.1	33
63	Secondary hyperalgesia is mediated by heatâ€insensitive Aâ€fibre nociceptors. Journal of Physiology, 2016, 594, 6767-6776.	1.3	33
64	Early gamma-oscillations as correlate of localized nociceptive processing in primary sensorimotor cortex. Journal of Neurophysiology, 2020, 123, 1711-1726.	0.9	33
65	EEG frequency tagging to explore the cortical activity related to the tactile exploration of natural textures. Scientific Reports, 2016, 6, 20738.	1.6	31
66	Visuomotor Correlates of Conflict Expectation in the Context of Motor Decisions. Journal of Neuroscience, 2018, 38, 9486-9504.	1.7	31
67	Pupil-Linked Arousal Responds to Unconscious Surprisal. Journal of Neuroscience, 2019, 39, 5369-5376.	1.7	31
68	Human non-phase-locked gamma oscillations in experience-based perception of visual scenes. Neuroscience Letters, 2004, 354, 14-17.	1.0	30
69	Dishabituation of laser-evoked EEG responses: dissecting the effect of certain and uncertain changes in stimulus spatial location. Experimental Brain Research, 2012, 218, 361-372.	0.7	30
70	MEP Latencies Predict the Neuromodulatory Effect of cTBS Delivered to the Ipsilateral and Contralateral Sensorimotor Cortex. PLoS ONE, 2015, 10, e0133893.	1.1	30
71	Prisms for pain. Can visuoâ€motor rehabilitation strategies alleviate chronic pain?. European Journal of Pain, 2016, 20, 64-69.	1.4	28
72	Challenges and opportunities in translational pain research – An opinion paper of the working group on translational pain research of the European pain federation (EFIC). European Journal of Pain, 2021, 25, 731-756.	1.4	28

#	Article	IF	CITATIONS
73	Enhanced brain responses to C-fiber input in the area of secondary hyperalgesia induced by high-frequency electrical stimulation of the skin. Journal of Neurophysiology, 2014, 112, 2059-2066.	0.9	27
74	The effect of heterotopic noxious conditioning stimulation on AÎ′â€, C―and Aβâ€fibre brain responses in humans. European Journal of Neuroscience, 2015, 42, 2707-2715.	1.2	26
75	Are laser-evoked brain potentials modulated by attending to first or second pain?. Pain, 2007, 129, 321-331.	2.0	25
76	Reliable EEG responses to the selective activation of C-fibre afferents using a temperature-controlled infrared laser stimulator in conjunction with an adaptive staircase algorithm. Pain, 2013, 154, 1578-1587.	2.0	25
77	Human primary somatosensory cortex is differentially involved in vibrotaction and nociception. Journal of Neurophysiology, 2017, 118, 317-330.	0.9	25
78	Phase-locked and non-phase-locked EEG responses to pinprick stimulation before and after experimentally-induced secondary hyperalgesia. Clinical Neurophysiology, 2017, 128, 1445-1456.	0.7	25
79	Brain regions preferentially responding to transient and iso-intense painful or tactile stimuli. NeuroImage, 2019, 192, 52-65.	2.1	25
80	Unmasking the obligatory components of nociceptive event-related brain potentials. Journal of Neurophysiology, 2013, 110, 2312-2324.	0.9	24
81	Cortical venous thrombosis after lumbar puncture. Journal of Neurology, 2002, 249, 1313-1315.	1.8	23
82	How response inhibition modulates nociceptive and non-nociceptive somatosensory brain-evoked potentials. Clinical Neurophysiology, 2007, 118, 1503-1516.	0.7	23
83	Psychophysical and electrophysiological evidence for nociceptive dysfunction in complex regional pain syndrome. Pain, 2013, 154, 2521-2528.	2.0	23
84	EEG frequency tagging using ultra-slow periodic heat stimulation of the skin reveals cortical activity specifically related to C fiber thermonociceptors. NeuroImage, 2017, 146, 266-274.	2.1	23
85	EEG Frequency-Tagging and Input–Output Comparison in Rhythm Perception. Brain Topography, 2018, 31, 153-160.	0.8	23
86	Single-trial detection of human brain responses evoked by laser activation of Aĺ-nociceptors using the wavelet transform of EEG epochs. Neuroscience Letters, 2004, 361, 241-244.	1.0	22
87	Thermoregulatory vasomotor tone of the rat tail and paws in thermoneutral conditions and its impact on a behavioral model of acute pain. Journal of Neurophysiology, 2014, 112, 2185-2198.	0.9	22
88	Intracerebral evidence of rhythm transform in the human auditory cortex. Brain Structure and Function, 2017, 222, 2389-2404.	1.2	22
89	Anodal Transcutaneous Spinal Direct Current Stimulation (tsDCS) Selectively Inhibits the Synaptic Efficacy of Nociceptive Transmission at Spinal Cord Level. Neuroscience, 2018, 393, 150-163.	1.1	22
90	Report of one confirmed generalized seizure and one suspected partial seizure induced by deep continuous theta burst stimulation of the right operculo-insular cortex. Brain Stimulation, 2018, 11, 1187-1188.	0.7	22

#	Article	IF	CITATIONS
91	Theta Burst Stimulation Applied over Primary Motor and Somatosensory Cortices Produces Analgesia Unrelated to the Changes in Nociceptive Event-Related Potentials. PLoS ONE, 2013, 8, e73263.	1.1	22
92	Assessment of chemosensory function using electroencephalographic techniques. Rhinology, 2012, 50, 13-21.	0.7	22
93	Habituation of phase-locked local field potentials and gamma-band oscillations recorded from the human insula. Scientific Reports, 2018, 8, 8265.	1.6	21
94	Cognitive-Motor Interference While Grasping, Lifting and Holding Objects. PLoS ONE, 2013, 8, e80125.	1.1	20
95	Characterizing the Short-Term Habituation of Event-Related Evoked Potentials. ENeuro, 2018, 5, ENEURO.0014-18.2018.	0.9	20
96	Clinical usefulness and feasibility of time-frequency analysis of chemosensory event-related potentials. Rhinology, 2013, 51, 210-221.	0.7	20
97	Functional characterisation of sensory ERPs using probabilistic ICA: Effect of stimulus modality and stimulus location. Clinical Neurophysiology, 2010, 121, 577-587.	0.7	19
98	Finite element analysis of thermal laser skin stimulation for a finer characterization of the nociceptive system. Journal of Neuroscience Methods, 2014, 223, 1-10.	1.3	19
99	Heterosynaptic facilitation of mechanical nociceptive input is dependent on the frequency of conditioning stimulation. Journal of Neurophysiology, 2019, 122, 994-1001.	0.9	19
100	Intense pain influences the cortical processing of visual stimuli projected onto the sensitized skin. Pain, 2017, 158, 691-697.	2.0	18
101	Insular responses to transient painful and non-painful thermal and mechanical spinothalamic stimuli recorded using intracerebral EEG. Scientific Reports, 2020, 10, 22319.	1.6	18
102	Can we Smell without an Olfactory Bulb?. American Journal of Rhinology & Allergy, 2007, 21, 548-550.	2.3	17
103	Activating selectively and reliably nociceptive afferents with concentric electrode stimulation: Yes we can! Provided that low stimulus intensities are used!. Clinical Neurophysiology, 2013, 124, 424.	0.7	17
104	High frequency electrical stimulation induces a long-lasting enhancement of event-related potentials but does not change the perception elicited by intra-epidermal electrical stimuli delivered to the area of increased mechanical pinprick sensitivity. PLoS ONE, 2018, 13, e0203365.	1.1	17
105	Dynamics of the perception and EEG signals triggered by tonic warm and cool stimulation. PLoS ONE, 2020, 15, e0231698.	1.1	17
106	A review of the evidence against the "first come first served―hypothesis. Comment on Truini et al. [Pain 2007;131:43–7]. Pain, 2008, 136, 219-221.	2.0	16
107	Estimation of intraepidermal fiber density by the detection rate of nociceptive laser stimuli in normal and pathological conditions. Neurophysiologie Clinique, 2012, 42, 281-291.	1.0	16
108	Quickly responding Câ€fibre nociceptors contribute to heat hypersensitivity in the area of secondary hyperalgesia. Journal of Physiology, 2018, 596, 4443-4455.	1.3	16

#	Article	IF	CITATIONS
109	Tonic thermonociceptive stimulation selectively modulates ongoing neural oscillations in the human posterior insula: Evidence from intracerebral EEG. NeuroImage, 2019, 188, 70-83.	2.1	16
110	Can the functional MRI responses to physical pain really tell us why social rejection "hurts"?. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E343-E343.	3.3	14
111	Automated single-trial assessment of laser-evoked potentials as an objective functional diagnostic tool for the nociceptive system. Clinical Neurophysiology, 2012, 123, 2437-2445.	0.7	14
112	Shifting attention between the space of the body and external space: Electrophysiological correlates of visualâ€nociceptive crossmodal spatial attention. Psychophysiology, 2014, 51, 464-477.	1.2	14
113	Feasibility of Topical Applications of Natural High-Concentration Capsaicinoid Solutions in Patients with Peripheral Neuropathic Pain: A Retrospective Analysis. Pain Research and Management, 2016, 2016, 1-6.	0.7	14
114	Temporal Profile and Limb-specificity of Phasic Pain-Evoked Changes in Motor Excitability. Neuroscience, 2018, 386, 240-255.	1.1	14
115	Central sensitization increases the pupil dilation elicited by mechanical pinprick stimulation. Journal of Neurophysiology, 2019, 121, 1621-1632.	0.9	14
116	Adaptation of the Sniffin' Sticks Test in South-Kivu. European Annals of Otorhinolaryngology, Head and Neck Diseases, 2020, 137, 467-471.	0.4	14
117	EEG Frequency Tagging to Dissociate the Cortical Responses to Nociceptive and Nonnociceptive Stimuli. Journal of Cognitive Neuroscience, 2014, 26, 2262-2274.	1.1	13
118	Frequency tagging to track the neural processing of contrast in fast, continuous sound sequences. Journal of Neurophysiology, 2017, 118, 243-253.	0.9	13
119	Clinical usefulness and feasibility of time-frequency analysis of chemosensory event-related potentials. Rhinology, 2013, 51, 210-221.	0.7	13
120	Vagus Nerve Stimulation Elicits Sleep EEG Desynchronization and Network Changes in Responder Patients in Epilepsy. Neurotherapeutics, 2021, 18, 2623-2638.	2.1	13
121	Unirhinal Olfactory Testing for the Diagnostic Workup of Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2015, 47, 253-270.	1.2	12
122	Bilateral tactile hypersensitivity and neuroimmune responses after spared nerve injury in mice lacking vasoactive intestinal peptide. Experimental Neurology, 2017, 293, 62-73.	2.0	12
123	A novel method using EEG to characterize the cortical processes involved in active and passive touch. , 2016, , .		11
124	EEG time-warping to study non-strictly-periodic EEG signals related to the production of rhythmic movements. Journal of Neuroscience Methods, 2018, 308, 106-115.	1.3	11
125	Chapter 27 Are the processes reflected by late and ultra-late laser evoked potentials specific of nociception?. Supplements To Clinical Neurophysiology, 2006, 59, 197-204.	2.1	10
126	Dyspnea-pain counterirritation induced by inspiratory threshold loading: a laser-evoked potentials study. Journal of Applied Physiology, 2012, 112, 1166-1173.	1.2	9

#	Article	IF	CITATIONS
127	The focus of spatial attention during the induction of central sensitization can modulate the subsequent development of secondary hyperalgesia. Cortex, 2020, 124, 193-203.	1.1	9
128	Using EEG (SS-EPs) to characterize the brain activity in response to textured stimuli in passive touch. , 2015, , .		8
129	Fast periodic visual stimulation to study tool-selective processing in the human brain. Experimental Brain Research, 2018, 236, 2751-2763.	0.7	8
130	Development of a new psychophysical method to assess intranasal trigeminal chemosensory function. Rhinology, 2019, 57, 0-0.	0.7	8
131	Within―and betweenâ€session reliability of secondary hyperalgesia induced by electrical highâ€frequency stimulation. European Journal of Pain, 2020, 24, 1585-1597.	1.4	8
132	Capsaicin-Induced Skin Desensitization Differentially Affects A-Delta and C-Fiber-Mediated Heat Sensitivity. Frontiers in Pharmacology, 2020, 11, 615.	1.6	8
133	Central sensitization of nociceptive pathways demonstrated by robot-controlled pinprick-evoked brain potentials. Clinical Neurophysiology, 2020, 131, 2491-2498.	0.7	8
134	Assessing thermal sensitivity using transient heat and cold stimuli combined with a Bayesian adaptive method in a clinical setting: A proof of concept study. European Journal of Pain, 2020, 24, 1812-1821.	1.4	8
135	How different experimental models of secondary hyperalgesia change the nociceptive flexion reflex. Clinical Neurophysiology, 2021, 132, 2989-2995.	0.7	8
136	Lateralisation of intranasal trigeminal chemosensory event-related potentials. Neurophysiologie Clinique, 2008, 38, 23-30.	1.0	7
137	New Insights into Cutaneous Laser Stimulation – Dependency on Skin and Laser Type. Neuroscience, 2020, 448, 71-84.	1.1	7
138	Improvement of Impulsivity and Decision Making by Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex in a Patient with Gambling Disorder. Journal of Gambling Studies, 2022, 38, 627-634.	1.1	7
139	Usefulness and feasibility of psychophysical and electrophysiological olfactory testing in the rhinology clinic. Rhinology, 2009, 47, 28-35.	0.7	7
140	Fonctions psychométriques et méthodes psychophysiques adaptatives pour l'étude de la douleur. Douleur Et Analgesie, 2001, 14, 73-77.	0.2	6
141	Brain responses to signals ascending through C-fibers. International Congress Series, 2002, 1232, 181-192.	0.2	6
142	The rostral ventromedial medulla control of cutaneous vasomotion of paws and tail in the rat: implication for pain studies. Journal of Neurophysiology, 2016, 115, 773-789.	0.9	6
143	Mind Your Grip: Even Usual Dexterous Manipulation Requires High Level Cognition. Frontiers in Behavioral Neuroscience, 2017, 11, 220.	1.0	6
144	Side-channel attacks against the human brain: the PIN code case study (extended version). Brain Informatics, 2018, 5, 12.	1.8	6

#	Article	IF	CITATIONS
145	Burst-like conditioning electrical stimulation is more efficacious than continuous stimulation for inducing secondary hyperalgesia in humans. Journal of Neurophysiology, 2020, 123, 323-328.	0.9	6
146	Zero gravity induced by parabolic flight enhances automatic capture and weakens voluntary maintenance of visuospatial attention. Npj Microgravity, 2021, 7, 29.	1.9	6
147	Combining Topical Agonists With the Recording of Event-Related Brain Potentials to Probe the Functional Involvement of TRPM8, TRPA1 and TRPV1 in Heat and Cold Transduction in the Human Skin. Journal of Pain, 2022, 23, 754-771.	0.7	6
148	Peripheral vs. central determinants of vibrotactile adaptation. Journal of Neurophysiology, 2016, 115, 685-691.	0.9	5
149	Modulation of the N13 component of the somatosensory evoked potentials in an experimental model of central sensitization in humans. Scientific Reports, 2021, 11, 20838.	1.6	5
150	The N13 spinal component of somatosensory evoked potentials is modulated by heterotopic noxious conditioning stimulation suggesting an involvement of spinal wide dynamic range neurons. Neurophysiologie Clinique, 2021, 51, 517-523.	1.0	5
151	Frequency tagging of steadyâ€state evoked potentials to explore the crossmodal links in spatial attention between vision and touch. Psychophysiology, 2015, 52, 1498-1510.	1.2	4
152	No evidence of widespread mechanical pressure hyperalgesia after experimentally induced central sensitization through skin nociceptors. Pain Reports, 2018, 3, e691.	1.4	4
153	Investigating perceptual simultaneity between nociceptive and visual stimuli by means of temporal order judgments. Neuroscience Letters, 2020, 735, 135156.	1.0	4
154	Transcutaneous auricular VNS applied to experimental pain: A paired behavioral and EEG study using thermonociceptive CO2 laser. PLoS ONE, 2021, 16, e0254480.	1.1	4
155	Side-Channel Attacks Against the Human Brain: The PIN Code Case Study. Lecture Notes in Computer Science, 2017, , 171-189.	1.0	4
156	Prediction of severe and persistent postoperative pain by psychophysical testing. Douleur Et Analgesie, 2014, 27, 154-161.	0.2	3
157	Processing of Laser-Evoked Potentials in Patients with Chronic Whiplash-Associated Disorders, Chronic Fatigue Syndrome, and Healthy Controls: A Case–Control Study. Pain Medicine, 2020, 21, 2553-2563.	0.9	3
158	IMI2-PainCare-BioPain-RCT3: a randomized, double-blind, placebo-controlled, crossover, multi-center trial in healthy subjects to investigate the effects of lacosamide, pregabalin, and tapentadol on biomarkers of pain processing observed by electroencephalography (EEG). Trials, 2021, 22, 404.	0.7	3
159	Evidence for alterations to dynamic quantitative sensory tests in patients with chronic temporomandibular myalgia: A systematic review of observational studies with metaâ€analysis. Journal of Oral Rehabilitation, 2022, 49, 654-670.	1.3	3
160	MultichannelÂtranscranial direct current stimulation over the left dorsolateral prefrontalÂcortex may modulate the induction of secondary hyperalgesia, a double-blinded cross-over study in healthy volunteers. PLoS ONE, 2022, 17, e0270047.	1.1	3
161	Are There Nociceptive-Specific Brain Potentials? Reply to Baumgätner and Treede. Journal of Neurophysiology, 2009, 102, 3075-3076.	0.9	2
162	Spatial Filtering of EEG Signals to Identify Periodic Brain Activity Patterns. Lecture Notes in Computer Science, 2018, , 524-533.	1.0	2

#	Article	IF	CITATIONS
163	Perceptual correlates of homosynaptic long-term potentiation in human nociceptive pathways: a replication study. Royal Society Open Science, 2021, 8, 200830.	1.1	2
164	High-frequency electrical stimulation of cutaneous nociceptors differentially affects pain perception elicited by homotopic and heterotopic electrical stimuli. Journal of Neurophysiology, 2021, 126, 1038-1044.	0.9	2
165	Combining EEG and fMRI in Pain Research. , 2009, , 365-384.		2
166	Superstitious perceptions of a face revealed by non phase-locked gamma oscillations in the human brain. Journal of Vision, 2010, 3, 94-94.	0.1	2
167	IMI2-PainCare-BioPain-RCT1: study protocol for a randomized, double-blind, placebo-controlled, crossover, multi-center trial in healthy subjects to investigate the effects of lacosamide, pregabalin, and tapentadol on biomarkers of pain processing observed by peripheral nerve excitability testing (NET). Trials, 2022, 23, 163.	0.7	2
168	Fisiologia ed esplorazione dei disturbi dell'olfatto. EMC - Otorinolaringoiatria, 2016, 15, 1-11.	0.0	1
169	FisiologÃa del dolor. EMC - Kinesiterapia - Medicina FÃsica, 2018, 39, 1-22.	0.1	1
170	Investiguer la relation entre douleur et conscience : une approche lésionnelle au moyen de l'électroencéphalographie. Douleur Et Analgesie, 2019, 32, 69-70.	0.2	1
171	S115 ARE NOCICEPTIVE CORTICAL RESPONSES NECESSARILY RELAYED THROUGH THE PRIMARY SOMATOSENSORY CORTEX?. European Journal of Pain Supplements, 2011, 5, 200-200.	0.0	0
172	T153 SHIELDING COGNITIVE PROCESSING FROM DISTRACTION FROM PAIN WITH WORKING MEMORY. European Journal of Pain Supplements, 2011, 5, 30-30.	0.0	0
173	F114 PARALLEL PROCESSING OF NOCICEPTIVE AND NON-NOCICEPTIVE SOMATOSENSORY INFORMATION IN S1 AND S2: EVIDENCE FROM DYNAMIC CAUSAL MODELLING OF fMRI DATA. European Journal of Pain Supplements, 2011, 5, 107-107.	0.0	0
174	S112 LASER-INDUCED GAMMA OSCILLATIONS ROBUSTLY CORRELATE WITH PAIN PERCEPTION REGARDLESS OF STIMULUS SALIENCY. European Journal of Pain Supplements, 2011, 5, 199-200.	0.0	0
175	S169 THE DIRECTION MATTERS: LASER-EVOKED POTENTIALS ARE DETERMINED BY STIMULUS SALIENCY, NOT BY ABSOLUTE STIMULUS NOVELTY. European Journal of Pain Supplements, 2011, 5, 216-216.	0.0	0
176	Corrigendum to "Low intensity intra-epidermal electrical stimulation can activate Aδ-nociceptors selectively―[Pain 150 (2010) 199–207]. Pain, 2011, 152, 1212.	2.0	0
177	Absence of Evidence or Evidence of Absence? Commentary: Captured by the pain: Pain steady-state evoked potentials are not modulated by selective spatial attention. Frontiers in Human Neuroscience, 2016, 10, 252.	1.0	0
178	ll gusto. EMC - Otorinolaringoiatria, 2016, 15, 1-7.	0.0	0
179	FisiologÃa y exploración de los trastornos de la olfacción. EMC - OtorrinolaringologÃa, 2016, 45, 1-12.	0.0	0

0.0 0

#	Article	IF	CITATIONS
181	Reply to letter to the Editor. Brain Stimulation, 2019, 12, 202-203.	0.7	0
182	Adaptation du Sniffin' Sticks Test au Sud-Kivu. Annales Francaises D'Oto-Rhino-Laryngologie Et De Pathologie Cervico-Faciale, 2021, 138, 79-84.	0.0	0
183	Linear Periodic Discriminant Analysis of Multidimensional Signals. Lecture Notes in Computer Science, 2018, , 476-487.	1.0	Ο
184	FisiologÃa del dolor: mecanismos centrales y controles. EMC - Anestesia-Reanimación, 2018, 44, 1-22.	0.1	0
185	IMI-PAINCARE, BIOPAIN : validation chez l'homme de nouveaux biomarqueurs fonctionnels pour le développement pharmacologique de traitements de la douleur. Douleur Et Analgesie, 2018, 31, 230-231.	0.2	Ο
186	Does Motor Cortex Engagement During Movement Preparation Differentially Inhibit Nociceptive Processing in Patients with Chronic Whiplash Associated Disorders, Chronic Fatigue Syndrome and Healthy Controls? An Experimental Study. Journal of Clinical Medicine, 2020, 9, 1520.	1.0	0