List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7686996/publications.pdf Version: 2024-02-01

Ιιίννα Τανιάκα

#	Article	IF	CITATIONS
1	Length impairments of the axon initial segment in rodent models of attention-deficit hyperactivity disorder and autism spectrum disorder. Neurochemistry International, 2022, 153, 105273.	3.8	10
2	Insomnia and depressive behavior of MyD88-deficient mice: Relationships with altered microglial functions. Journal of Neuroimmunology, 2022, 363, 577794.	2.3	7
3	Zonisamide Ameliorates Microglial Mitochondriopathy in Parkinson's Disease Models. Brain Sciences, 2022, 12, 268.	2.3	6
4	Surgical stress quickly affects the numbers of circulating B-cells and neutrophils in murine septic and aseptic models through a l² ₂ adrenergic receptor. Journal of Immunotoxicology, 2022, 19, 8-16.	1.7	3
5	Synaptic elimination by microglia and disturbed higher brain functions. Neurochemistry International, 2021, 142, 104901.	3.8	29
6	Microglial metabolic disturbances and neuroinflammation in cerebral infarction. Journal of Pharmacological Sciences, 2021, 145, 130-139.	2.5	72
7	CD44 expression in the tumor periphery predicts the responsiveness to bevacizumab in the treatment of recurrent glioblastoma. Cancer Medicine, 2021, 10, 2013-2025.	2.8	15
8	Snapshot of microglial physiological functions. Neurochemistry International, 2021, 144, 104960.	3.8	12
9	Dual Roles of Microglia in the Basal Ganglia in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 3907.	4.1	6
10	Microglia and the Aging Brain: Are Geriatric Microglia Linked to Poor Sleep Quality?. International Journal of Molecular Sciences, 2021, 22, 7824.	4.1	8
11	Hypoxia-induced phenotypic transition from highly invasive to less invasive tumors in glioma stem-like cells: Significance of CD44 and osteopontin as therapeutic targets in glioblastoma. Translational Oncology, 2021, 14, 101137.	3.7	15
12	Chloride intracellular channel protein 2 is secreted and inhibits MMP14 activity, while preventing tumor cell invasion and metastasis. Neoplasia, 2021, 23, 754-765.	5.3	12
13	Generation of CSF1-Independent Ramified Microglia-Like Cells from Leptomeninges In Vitro. Cells, 2021, 10, 24.	4.1	1
14	Elevated exosomal lysyl oxidase like 2 is a potential biomarker for head and neck squamous cell carcinoma. Laryngoscope, 2020, 130, E327-E334.	2.0	21
15	Phagocytic elimination of synapses by microglia during sleep. Clia, 2020, 68, 44-59.	4.9	88
16	B lymphocytopenia and Bregs in a not-to-die murine sepsis model. Biochemical and Biophysical Research Communications, 2020, 523, 202-207.	2.1	10
17	Lister hooded rats as a novel animal model of attention-deficit/hyperactivity disorder. Neurochemistry International, 2020, 141, 104857.	3.8	7
18	Microglia and Macrophages in the Pathological Central and Peripheral Nervous Systems. Cells, 2020, 9, 2132.	4.1	43

#	Article	IF	CITATIONS
19	Activated microglia-derived macrophage-like cells exacerbate brain edema after ischemic stroke correlate with astrocytic expression of aquaporin-4 and interleukin-1 alpha release. Neurochemistry International, 2020, 140, 104848.	3.8	27
20	Chronic constriction injury of the sciatic nerve in rats causes different activation modes of microglia between the anterior and posterior horns of the spinal cord. Neurochemistry International, 2020, 134, 104672.	3.8	22
21	Chloride intracellular channel protein 2 in cancer and non-cancer human tissues: relationship with tight junctions. Tissue Barriers, 2019, 7, 1593775.	3.2	23
22	Aggravating effects of treadmill exercises during the early-onset period in a rat traumatic brain injury model: When should rehabilitation exercises be initiated?. IBRO Reports, 2019, 7, 82-89.	0.3	12
23	Carbon monoxide poisoning–induced delayed encephalopathy accompanies decreased microglial cell numbers: Distinctive pathophysiological features from hypoxemia–induced brain damage. Brain Research, 2019, 1710, 22-32.	2.2	17
24	Behavioral tests predicting striatal dopamine level in a rat hemi-Parkinson's disease model. Neurochemistry International, 2019, 122, 38-46.	3.8	45
25	Modafinil alleviates levodopa-induced excessive nighttime sleepiness and restores monoaminergic systems in a nocturnal animal model of Parkinson's disease. Journal of Pharmacological Sciences, 2018, 136, 266-271.	2.5	13
26	Truncated CD200 stimulates tumor immunity leading to fewer lung metastases in a novel Wistar rat metastasis model. Biochemical and Biophysical Research Communications, 2018, 496, 542-548.	2.1	10
27	Enhancement of antitumor activity by using 5-ALA–mediated sonodynamic therapy to induce apoptosis in malignant gliomas: significance of high-intensity focused ultrasound on 5-ALA-SDT in a mouse glioma model. Journal of Neurosurgery, 2018, 129, 1416-1428.	1.6	57
28	Sustained anti-inflammatory effects of TGF-β1 on microglia/macrophages. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 721-734.	3.8	44
29	Significance of Glioma Stem-Like Cells in the Tumor Periphery That Express High Levels of CD44 in Tumor Invasion, Early Progression, and Poor Prognosis in Glioblastoma. Stem Cells International, 2018, 2018, 1-15.	2.5	52
30	Comparison of the detrimental features of microglia and infiltrated macrophages in traumatic brain injury: A study using a hypnotic bromovalerylurea. Glia, 2018, 66, 2158-2173.	4.9	47
31	Facial paralysis induced by ear inoculation of herpes simplex virus in rat. Auris Nasus Larynx, 2017, 44, 58-64.	1.2	9
32	Elevated Na + /H + exchanger-1 expression enhances the metastatic collective migration of head and neck squamous cell carcinoma cells. Biochemical and Biophysical Research Communications, 2017, 486, 101-107.	2.1	18
33	Microglia may compensate for dopaminergic neuron loss in experimental Parkinsonism through selective elimination of glutamatergic synapses from the subthalamic nucleus. Glia, 2017, 65, 1833-1847.	4.9	44
34	High mobility group box 1 enhances hyperthermia-induced seizures and secondary epilepsy associated with prolonged hyperthermia-induced seizures in developing rats. Metabolic Brain Disease, 2017, 32, 2095-2104.	2.9	17
35	Effects of hypnotic bromovalerylurea on microglial BV2 cells. Journal of Pharmacological Sciences, 2017, 134, 116-123.	2.5	9
36	Goreisan Inhibits Upregulation of Aquaporin 4 and Formation of Cerebral Edema in the Rat Model of Juvenile Hypoxic-Ischemic Encephalopathy. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-10.	1.2	30

JUNYA TANAKA

#	Article	IF	CITATIONS
37	Neurotoxin 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-Induced Animal Models of Parkinson's Disease. , 2017, , 1087-1108.		4
38	Blood vessels expressing CD90 in human and rat brain tumors. Neuropathology, 2016, 36, 168-180.	1.2	16
39	A Truncated form of CD200 (CD200S) Expressed on Glioma Cells Prolonged Survival in a Rat Glioma Model by Induction of a Dendritic Cell-Like Phenotype in Tumor-Associated Macrophages. Neoplasia, 2016, 18, 229-241.	5.3	12
40	The hypnotic bromovalerylurea ameliorates 6-hydroxydopamine-induced dopaminergic neuron loss while suppressing expression of interferon regulatory factors by microglia. Neurochemistry International, 2016, 99, 158-168.	3.8	15
41	Treadmill exercise ameliorates ischemia-induced brain edema while suppressing Na+/H+ exchanger 1 expression. Experimental Neurology, 2016, 277, 150-161.	4.1	19
42	miR340 Suppresses the Stem-like Cell Function of Glioma-Initiating Cells by Targeting Tissue Plasminogen Activator. Cancer Research, 2015, 75, 1123-1133.	0.9	56
43	Anti-inflammatory effects of noradrenaline on LPS-treated microglial cells: Suppression of NFκB nuclear translocation and subsequent STAT1 phosphorylation. Neurochemistry International, 2015, 90, 56-66.	3.8	40
44	CD200+ and CD200â^' macrophages accumulated in ischemic lesions of rat brain: The two populations cannot be classified as either M1 or M2 macrophages. Journal of Neuroimmunology, 2015, 282, 7-20.	2.3	25
45	Oct-3/4 modulates the drug-resistant phenotype of glioblastoma cells through expression of ATP binding cassette transporter G2. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1197-1205.	2.4	16
46	The ameliorative effects of a hypnotic bromvalerylurea in sepsis. Biochemical and Biophysical Research Communications, 2015, 459, 319-326.	2.1	12
47	Oct-3/4 promotes tumor angiogenesis through VEGF production in glioblastoma. Brain Tumor Pathology, 2015, 32, 31-40.	1.7	9
48	Activated microglia in a rat stroke model express NG2 proteoglycan in periâ€infarct tissue through the involvement of TGFâ€Î²1. Glia, 2014, 62, 185-198.	4.9	55
49	Microglia and their regulatory mechanisms in the brain. The Journal of Physical Fitness and Sports Medicine, 2014, 3, 21-26.	0.3	0
50	Expression of MCPâ€1 and fractalkine on endothelial cells and astrocytes may contribute to the invasion and migration of brain macrophages in ischemic rat brain lesions. Journal of Neuroscience Research, 2013, 91, 681-693.	2.9	42
51	Premetastatic vasculogenesis in oral squamous cell carcinoma xenograft-draining lymph nodes. Oral Oncology, 2012, 48, 663-670.	1.5	10
52	Zonisamide up-regulated the mRNAs encoding astrocytic anti-oxidative and neurotrophic factors. European Journal of Pharmacology, 2012, 689, 72-80.	3.5	22
53	Octâ€ $3/4$ promotes migration and invasion of glioblastoma cells. Journal of Cellular Biochemistry, 2012, 113, 508-517.	2.6	41
54	Anticonvulsive Effect of Paeoniflorin on Experimental Febrile Seizures in Immature Rats: Possible Application for Febrile Seizures in Children. PLoS ONE, 2012, 7, e42920.	2.5	25

#	Article	IF	CITATIONS
55	Subcutaneous injection containing IL-3 and GM-CSF ameliorates stab wound-induced brain injury in rats. Experimental Neurology, 2011, 229, 507-516.	4.1	30
56	Transient ischemia-induced paresis and complete paraplegia displayed distinct reactions of microglia and macrophages. Brain Research, 2011, 1420, 114-124.	2.2	23
57	A cytokine mixture of GMâ€CSF and ILâ€3 that induces a neuroprotective phenotype of microglia leading to amelioration of (6â€OHDA)â€induced Parkinsonism of rats. Brain and Behavior, 2011, 1, 26-43.	2.2	38
58	Cancer stem-like cells of glioblastoma characteristically express MMP-13 and display highly invasive activity. International Journal of Oncology, 2010, 37, 1121-31.	3.3	52
59	Iba1 ⁺ /NG2 ⁺ Macrophage-Like Cells Expressing a Variety of Neuroprotective Factors Ameliorate Ischemic Damage of the Brain. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 603-615.	4.3	68
60	β-hydroxybutyrate alters GABA-transaminase activity in cultured astrocytes. Brain Research, 2009, 1268, 17-23.	2.2	53
61	Accumulation of Macrophage-Like Cells Expressing NG2 Proteoglycan and Iba1 in Ischemic Core of Rat Brain after Transient Middle Cerebral Artery Occlusion. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 149-163.	4.3	76
62	Involvement of heparanase in migration of microglial cells. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 709-715.	2.4	21
63	Expression of heparanase in nestin-positive reactive astrocytes in ischemic lesions of rat brain after transient middle cerebral artery occlusion. Neuroscience Letters, 2007, 417, 250-254.	2.1	18
64	Expression of CD200 by macrophage-like cells in ischemic core of rat brain after transient middle cerebral artery occlusion. Neuroscience Letters, 2007, 418, 44-48.	2.1	42
65	Intravenous Infusion of Dihydroginsenoside Rb1 Prevents Compressive Spinal Cord Injury and Ischemic Brain Damage through Upregulation of VEGF and Bcl-xL. Journal of Neurotrauma, 2007, 24, 1037-1054.	3.4	46
66	Antibodies to CD11b, CD68, and lectin label neutrophils rather than microglia in traumatic and ischemic brain lesions. Journal of Neuroscience Research, 2007, 85, 994-1009.	2.9	106
67	Molecular cloning and characterization of Nop25, a novel nucleolar RNA binding protein, highly conserved in vertebrate species. Experimental Cell Research, 2006, 312, 1031-1041.	2.6	9
68	Overexpression of SOCS3 inhibits astrogliogenesis and promotes maintenance of neural stem cells. Journal of Neurochemistry, 2006, 98, 459-470.	3.9	40
69	Prevention of Ischemic Neuronal Death by Intravenous Infusion of a Ginseng Saponin, Ginsenoside Rb1, That Upregulates Bcl-xLExpression. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 708-721.	4.3	66
70	Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25. Experimental Cell Research, 2006, 312, 1703-1712.	2.6	18
71	NG2 proteoglycan-expressing microglia as multipotent neural progenitors in normal and pathologic brains. Glia, 2006, 53, 754-768.	4.9	89
72	Functional expression of CCL6 by rat microglia: A possible role of CCL6 in cell–cell communication. Journal of Neuroimmunology, 2005, 167, 72-80.	2.3	36

#	Article	IF	CITATIONS
73	Suppression of Stat3 promotes neurogenesis in cultured neural stem cells. Journal of Neuroscience Research, 2005, 81, 163-171.	2.9	115
74	Protein 4.1ÂG localizes in rodent microglia. Histochemistry and Cell Biology, 2005, 124, 477-486.	1.7	16
75	Microglia, a potential source of neurons, astrocytes, and oligodendrocytes. Glia, 2004, 45, 96-104.	4.9	92
76	l-Serine-mediated release of apolipoprotein E and lipids from microglial cells. Experimental Neurology, 2004, 185, 220-231.	4.1	18
77	Protective effect of vitamin E against focal brain ischemia and neuronal death through induction of target genes of hypoxia-inducible factor-1. Neuroscience, 2004, 126, 433-440.	2.3	82
78	Neuronal distribution of EHSH1/intersectin: Molecular linker between clathrin-mediated endocytosis and signaling pathways. Journal of Neuroscience Research, 2003, 71, 468-477.	2.9	21
79	Testosterone up-regulates aquaporin-4 expression in cultured astrocytes. Journal of Neuroscience Research, 2003, 72, 709-715.	2.9	57
80	Two populations of microglial cells isolated from rat primary mixed glial cultures. Journal of Neuroscience Research, 2003, 73, 22-30.	2.9	20
81	Adenovirus-mediated overexpression of a gene prevents hearing loss and progressive inner hair cell loss after transient cochlear ischemia in gerbils. Gene Therapy, 2003, 10, 426-433.	4.5	44
82	Apolipoprotein E and Reelin ligands modulate tau phosphorylation through an Apolipoprotein E receptor/disabledâ€1/glycogen synthase kinaseâ€3î² cascade. FASEB Journal, 2003, 17, 295-297.	0.5	109
83	Suppressive effects of phosphodiesterase type IV inhibitors on rat cultured microglial cells: comparison with other types of cAMP-elevating agents. Neuropharmacology, 2002, 42, 262-269.	4.1	86
84	Effects of norepinephrine on rat cultured microglial cells that express α1, α2, β1 and β2 adrenergic receptors. Neuropharmacology, 2002, 43, 1026-1034.	4.1	184
85	Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by upâ€regulating Bclâ€x _L expression. Journal of Neuroscience Research, 2002, 67, 795-803.	2.9	180
86	Adrenergic Control of Microglia. Advances in Behavioral Biology, 2002, , 225-228.	0.2	0
87	Synthesis of espicufolin based on 6-endo ring closure of o-alkynoylnaphthols â€. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 229-238.	1.3	25
88	L-Serine regulates the activities of microglial cells that express very low level of 3-phosphoglycerate dehydrogenase, an enzyme forL-serine biosynthesis. Journal of Neuroscience Research, 2001, 64, 392-401.	2.9	24
89	Protective Effect of a Prosaposin-Derived, 18-Mer Peptide on Slowly Progressive Neuronal Degeneration after Brief Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1295-1302.	4.3	26
90	Expressions of neuropilin-1, neuropilin-2 and semaphorin 3A mRNA in the rat brain after middle cerebral artery occlusion. Brain Research, 2001, 914, 1-14.	2.2	68

JUNYA TANAKA

#	Article	IF	CITATIONS
91	Cytochrome c release from mitochondria to the cytosol was suppressed in the ischemia-tolerance-induced hippocampal CA1 region after 5-min forebrain ischemia in gerbils. Neuroscience Letters, 2000, 278, 53-56.	2.1	32
92	Histochemical cytochrome c oxidase activity and caspase-3 in gerbil hippocampal CA1 neurons after transient forebrain ischemia. Neuroscience Letters, 2000, 285, 127-130.	2.1	8
93	Improvement of the viability of cultured rat neurons by the non-essential amino acids l-serine and glycine that upregulates expression of the anti-apoptotic gene product Bcl-w. Neuroscience Letters, 2000, 295, 97-100.	2.1	27
94	An 18-Mer Peptide Fragment of Prosaposin Ameliorates Place Navigation Disability, Cortical Infarction, and Retrograde Thalamic Degeneration in Rats with Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 298-306.	4.3	26
95	Release of cytochrome c from mitochondria to cytosol in gerbil hippocampal CA1 neurons after transient forebrain ischemia. Brain Research, 1999, 849, 216-219.	2.2	41
96	Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. , 1999, 28, 85-96.		187
97	Distinctions between microglial cells and peripheral macrophages with regard to adhesive activities and morphology. Journal of Neuroscience Research, 1999, 57, 855-865.	2.9	9
98	Morphological differentiation of microglial cells in culture: involvement of insoluble factors derived from astrocytes. Neuroscience Research, 1999, 34, 207-215.	1.9	50
99	Distinctions between microglial cells and peripheral macrophages with regard to adhesive activities and morphology. Journal of Neuroscience Research, 1999, 57, 855-865.	2.9	2
100	Epidermal Growth Factor Protects Neuronal Cells In Vivo and In Vitro against Transient Forebrain Ischemia- and Free Radical-Induced Injuries. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 349-360.	4.3	85
101	Microglial cells prevent nitric oxide-induced neuronal apoptosis in vitro. , 1998, 53, 415-425.		83
102	Induction of resting microglia in culture medium devoid of glycine and serine. Glia, 1998, 24, 198-215.	4.9	83
103	Adrenergic agonists suppress the proliferation of microglia through β2-adrenergic receptor. Neuroscience Letters, 1998, 242, 37-40.	2.1	64
104	Ginsenoside Rb1 prevents image navigation disability, cortical infarction, and thalamic degeneration in rats with focal cerebral ischemia. Journal of Stroke and Cerebrovascular Diseases, 1998, 7, 1-9.	1.6	30
105	Astrocytes Modulate Nitric Oxide Production by Microglial Cells through Secretion of Serine and Glycine. Biochemical and Biophysical Research Communications, 1998, 251, 277-282.	2.1	37
106	Neurons Induce the Activation of Microglial Cellsin Vitro. Experimental Neurology, 1998, 154, 499-510.	4.1	33
107	Interleukin 3 Prevents Delayed Neuronal Death in the Hippocampal CA1 Field. Journal of Experimental Medicine, 1998, 188, 635-649.	8.5	69
108	Suppression by Platelet Factor 4 of the Myogenic Activity of Basic Fibroblast Growth Factor Archives of Histology and Cytology, 1997, 60, 163-174.	0.2	4

JUNYA TANAKA

#	Article	IF	CITATIONS
109	Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neuroscience Research, 1997, 28, 191-200.	1.9	188
110	β-Estradiol protects hippocampal CA1 neurons against transient forebrain ischemia in gerbil. Neuroscience Research, 1997, 29, 345-354.	1.9	125
111	Imaging of Oxygen Saturation and Distribution of Erythrocytes in Microvessels. Microcirculation, 1997, 4, 403-412.	1.8	15
112	Nitric oxide-mediated cGMP synthesis in oligodendrocytes in the developing rat brain. Glia, 1997, 19, 286-297.	4.9	105
113	Glucocorticoid- and mineralocorticoid receptors in microglial cells: The two receptors mediate differential effects of corticosteroids. , 1997, 20, 23-37.		195
114	Nitric oxideâ€mediated cGMP synthesis in oligodendrocytes in the developing rat brain. Glia, 1997, 19, 286-297.	4.9	4
115	Glucocorticoid―and mineralocorticoid receptors in microglial cells: The two receptors mediate differential effects of corticosteroids. Glia, 1997, 20, 23-37.	4.9	4
116	Microglial Ramification Requires Nondiffusible Factors Derived from Astrocytes. Experimental Neurology, 1996, 137, 367-375.	4.1	115
117	Effects of GM-CSF and ordinary supplements on the ramification of microglia in culture: A morphometrical study. , 1996, 18, 269-281.		109
118	A Hydrophilic Peptide Comprising 18 Amino Acid Residues of the Prosaposin Sequence Has Neurotrophic Activity In Vitro and In Vivo. Journal of Neurochemistry, 1996, 66, 2197-2200.	3.9	89
119	Caldesmon and low Mr isoform of tropomyosin are localized in neuronal growth cones. Journal of Neuroscience Research, 1995, 40, 294-305.	2.9	27
120	The organization of neurofilaments accumulated in perikaryon following aluminum administration: Relationship between structure and phosphorylation of neurofilaments. Neuroscience, 1995, 64, 553-569.	2.3	21
121	Phosphorylation of neurofilament H subunit as related to arrangement of neurofilaments. Journal of Neuroscience Research, 1994, 37, 691-713.	2.9	65
122	Gelsolin is localized in neuronal growth cones. Developmental Brain Research, 1993, 76, 268-271.	1.7	48
123	A HIGH LEVEL OF ANTI-GFAP AUTOANTIBODY IN THE SERUM OF PATIENTS WITH ALZHEIMER'S DISEASE . Biomedical Research, 1988, 9, 209-216.	0.9	18
124	Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarâ~ylase as a marker. Brain Research, 1984, 295, 13-25.	2.2	823
125	Evidence for the presence of a histaminergic neuron system in the rat brain: An immunohistochemical analysis. Neuroscience Letters, 1983, 39, 249-254.	2.1	194
126	Immunoreactive glucagon in the vascular walls of the rat. Life Sciences, 1983, 33, 1599-1604.	4.3	5

#	Article	IF	CITATIONS
127	Favorable and unfavorable roles of microglia and macrophages in the pathologic central nervous system. Neuroimmunology and Neuroinflammation, 0, 2020, .	1.4	6