Murli M Gupta

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/7686628/publications.pdf
Version: 2024-02-01

39471509 papers	1,288 citations	17 h-index	501196 g-index
40 all docs	40 docs citations	40 times ranked	477 citing authors

High-accuracy compact difference schemes for differential equations in mathematical sciences.
Annals of Mathematical Sciences and Applications, 2020, 5, 101-138.

Optimized BiCGStab Based GPU Accelerated Computation of Incompressible Viscous Flows by the $\$ \$ p s i$
$\$ \$ \ddot{\imath} \hat{\imath} \not \epsilon^{\prime \prime} v$ Formulation. International Journal of Applied and Computational Mathematics, 2017, 3, 1477-1495.

Preface of the â€œSymposium on High Accuracy Solution of Ordinary and Partial Differential
Equationsâ€: AIP Conference Proceedings, 2017, , .

On the improvement of convergence rate of difference schemes with high order differences for a convection-diffusion equation. AlP Conference Proceedings, 2015, , .

Preface of the â€œMinisymposium on high accuracy solution of ordinary and Partial Differential
Equationsâ€: AIP Conference Proceedings, 2015, , .

GPU accelerated flow computation by the streamfunction-velocity ($\overline{\mathrm{I}}-\hat{\mathrm{l}} \mathrm{I} / 2$) formulation. AIP Conference
Proceedings, 2015, , .

A robust implicit compact scheme for two-dimensional unsteady flows with a biharmonic stream
function formulation. Computers and Fluids, 2013, 84, 141-163.

8 Oscillatory flow past an inclined square cylinder at low Reynolds numbers. , 2012, , .
0

Preface of the "Minisymposium on high accuracy solution of ordinary and partial differential
equations". , 2012, , .

A streamfunctionâ€"velocity approach for 2D transient incompressible viscous flows. International Journal for Numerical Methods in Fluids, 2010, 62, 237-266.

11 High Order Difference Scheme for Helmholtz Equation with Mixed Boundary Conditions. , 2010, , .
0

12 High Order Finite Difference Schemes for Partial Differential Equations (Minisymposium \#26). , 2009, , .
0

13 Simulation of the Laminar Flow Past a Square Cylinder by the $\hat{l}^{\prime} \hat{a} \wedge \nu v$ formulation. , 2009, , .
0

Convergence of Fourth Order Compact Difference Schemes for Threeâ€ ©imensional
Convectionâ€Điffusion Equations. SIAM Journal on Numerical Analysis, 2007, 45, 443-455.

On the choice of initial conditions of difference schemes for parabolic equations. Proceedings in
Applied Mathematics and Mechanics, 2007, 7, 1025605-1025606.

A new paradigm for solving Navierâ€"Stokes equations: streamfunctionâ€"velocity formulation. Journal of Computational Physics, 2005, 207, 52-68.
19
20

Symbolic derivation of finite difference approximations for the three-dimensional Poisson equation.
Numerical Methods for Partial Differential Equations, 1998, 14, 593-606.
3.6

43

Multigrid Solution of Automatically Generated High-Order Discretizations for the Biharmonic Equation. SIAM Journal of Scientific Computing, 1998, 19, 1575-1585.
2.8

63

21 Comparison of Second- and Fourth-Order Discretizations for Multigrid Poisson Solvers. Journal of
Computational Physics, 1997, 132, 226-232.
3.8

A Compact Multigrid Solver for Convection-Diffusion Equations. Journal of Computational Physics, 1997, 132, 123-129.
3.8

55
High accuracy solutions of incompressible Navier-Stokes equations. Journal of Computational
Physics, 1991, 93, 343-359.
3.8

105

A Spectrum Enveloping Technique for Iterative Solution of Central Difference Approximations of
Convection-Diffusion Equations. SIAM Journal on Algebraic and Discrete Methods, 1986, 7, 513-526.
2
25 High-order difference schemes for two-dimensional elliptic equations. Numerical Methods for Partial Differential Equations, 1985, 1, 71-80.$3.6 \quad 74$
26 A single cell high order scheme for the convection-diffusion equation with variable coefficients.
International Journal for Numerical Methods in Fluids, 1984, 4, 641-651.1.6213
27 A fourth-order poisson solver. Journal of Computational Physics, 1984, 55, 166-172. 3.8 45
28 A survey of some second-order difference schemes for the steady-state convection-diffusionequation. International Journal for Numerical Methods in Fluids, 1983, 3, 319-331.
$29 \quad$ Nature of viscous flows near sharp corners. Computers and Fluids, 1981, 9, 379-388.2.5
582.5
30 A comparison of numerical solutions of convective and divergence forms of the Navier-Stokes3.86
equations for the driven cavity problem. Journal of Computational Physics, 1981, 43, 260-267. OOn the use of central difference scheme for Navier-Strokes equations. International Journal for
2.8 14
On the use of central difference scheme for Navier-Strok
Numerical Methods in Engineering, 1980, 15, 557-573.Boundary approximations and accuracy in viscous flow computations. Journal of Computational3.862Physics, 1979, 31, 265-288.Direct solution of the biharmonic equation using noncoupled approach. Journal of ComputationalPhysics, 1979, 33, 236-248.3.837
34 A critique of a second-order upwind scheme for viscous flow problems. AIAA Journal, 1978, 16, 759-761. 2.6 12
Some Difference Schemes for the Biharmonic Equation. SIAM Journal on Numerical Analysis, 1975, 12,
773-790.2.358

