Giulia Stratta

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7686619/giulia-stratta-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25,987 56 140 129 h-index g-index citations papers 31,118 140 7.2 4.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
129	Breakthrough Multi-Messenger Astrophysics with the THESEUS Space Mission. <i>Galaxies</i> , 2022 , 10, 60	2	O
128	The THESEUS space mission: science goals, requirements and mission concept. <i>Experimental Astronomy</i> , 2021 , 1	1.3	5
127	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 909, 218	4.7	46
126	Synergies of THESEUS with the large facilities of the 2030s and guest observer opportunities <i>Experimental Astronomy</i> , 2021 , 52, 407-437	1.3	2
125	A comparison between short GRB afterglows and kilonova AT2017gfo: shedding light on kilonovae properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 3379-3397	4.3	21
124	GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 3.4 M?. <i>Astrophysical Journal Letters</i> , 2020 , 892, L3	7.9	591
123	Advanced Virgo Status. <i>Journal of Physics: Conference Series</i> , 2020 , 1342, 012010	0.3	8
122	Observational constraints on the optical and near-infrared emission from the neutron star B lack hole binary merger candidate S190814bv. <i>Astronomy and Astrophysics</i> , 2020 , 643, A113	5.1	39
121	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2020 , 23, 3	32.5	144
120	Search for the optical counterpart of the GW170814 gravitational wave event with the VLT Survey Telescope. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 1731-1754	4.3	3
119	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal Letters</i> , 2019 , 882, L24	7.9	381
118	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. <i>Astrophysical Journal Letters</i> , 2019 , 871, L13	7.9	77
117	Can we quickly flag ultra-long gamma-ray bursts?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 2471-2476	4.3	5
116	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal</i> , 2019 , 875, 160	4.7	60
115	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary B lack-hole Merger GW170814. <i>Astrophysical Journal Letters</i> , 2019 , 876, L7	7.9	91
114	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. <i>Astrophysical Journal</i> , 2019 , 875, 161	4.7	49
113	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015\(\bar{\textsf{Q}}\)017 LIGO Data. **Astrophysical Journal*, 2019*, 879, 10	4.7	63

(2017-2019)

112	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. <i>Physical Review Letters</i> , 2019 , 123, 161102	7.4	68
111	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. <i>Physical Review Letters</i> , 2019 , 123, 231108	7.4	134
110	Observatory science with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1	3.6	31
109	Accretion in strong field gravity with eXTP. <i>Science China: Physics, Mechanics and Astronomy</i> , 2019 , 62, 1	3.6	17
108	Unveiling the enigma of ATLAS17aeu. Astronomy and Astrophysics, 2019, 621, A81	5.1	0
107	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2018 , 21, 3	32.5	543
106	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 2018 , 21, 1		2
105	GW170817: implications for the local kilonova rate and for surveys from ground-based facilities. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 4355-4360	4.3	12
104	On the Magnetar Origin of the GRBs Presenting X-Ray Afterglow Plateaus. <i>Astrophysical Journal</i> , 2018 , 869, 155	4.7	39
103	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2018 , 121, 231103	7.4	49
102	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867
101	Calibration of advanced Virgo and reconstruction of the gravitational wave signal h (t) during the observing run O2. <i>Classical and Quantum Gravity</i> , 2018 , 35, 205004	3.3	35
100	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003	0.3	4
99	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7.4	60
98	The THESEUS space mission concept: science case, design and expected performances. <i>Advances in Space Research</i> , 2018 , 62, 191-244	2.4	90
97	THESEUS: A key space mission concept for Multi-Messenger Astrophysics. <i>Advances in Space Research</i> , 2018 , 62, 662-682	2.4	37
96	Effects of waveform model systematics on the interpretation of GW150914. <i>Classical and Quantum Gravity</i> , 2017 , 34, 104002	3.3	74
95	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137

94	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121102	7.4	65
93	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. <i>Astrophysical Journal</i> , 2017 , 839, 12	4.7	107
92	The basic physics of the binary black hole merger GW150914. <i>Annalen Der Physik</i> , 2017 , 529, 1600209	2.6	45
91	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
90	Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. <i>Nature</i> , 2017 , 551, 67-70	50.4	444
89	A gravitational-wave standard siren measurement of the Hubble constant. <i>Nature</i> , 2017 , 551, 85-88	50.4	413
88	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
87	GRAWITA: VLT Survey Telescope observations of the gravitational wave sources GW150914 and GW151226. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 ,	4.3	3
86	Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A. <i>Galaxies</i> , 2017 , 5, 6	2	3
85	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42
84	THE MOST PROMISING ASTROPHYSICAL SOURCES OF ELECTROMAGNETIC AND GRAVITATIONAL RADIATION 2017 , 330-334		
83	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 851, L16	7.9	133
82	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. Astrophysical Journal Letters, 2017 , 850, L39	7.9	127
81	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
80	Status of the Advanced Virgo gravitational wave detector. <i>International Journal of Modern Physics A</i> , 2017 , 32, 1744003	1.2	5
79	On the Progenitor of Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L40	7.9	50
78	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. <i>Astrophysical Journal Letters</i> , 2017 , 851, L35	7.9	809
77	The 80 Ms follow-up of the X-ray afterglow of GRB 130427A challenges the standard forward shock model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 1111-1122	4.3	18

(2016-2016)

76	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOS FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130
75	All-sky search for long-duration gravitational wave transients with initial LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	27
74	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253
73	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 2 013. <i>Physical Review D</i> , 2016 , 93,	4.9	10
72	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. <i>Physical Review D</i> , 2016 , 93,	4.9	80
71	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188
70	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328
69	SUPPLEMENT: IIOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914I[2016, ApJL, 826, L13). <i>Astrophysical Journal, Supplement Series</i> , 2016 , 225, 8	8	38
68	Observing gravitational-wave transient GW150914 with minimal assumptions. <i>Physical Review D</i> , 2016 , 93,	4.9	94
67	Tests of General Relativity with GW150914. <i>Physical Review Letters</i> , 2016 , 116, 221101	7.4	837
66	Properties of the Binary Black Hole Merger GW150914. <i>Physical Review Letters</i> , 2016 , 116, 241102	7.4	515
65	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
64	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 818, L22	7.9	512
63	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
62	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016 , 33,	3.3	155
61	eXTP: Enhanced X-ray Timing and Polarization mission 2016 ,		73
60	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. <i>Living Reviews in Relativity</i> , 2016 , 19, 1	32.5	393
59	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 833, L1	7.9	209

58	Singular Spectrum Analysis for Astronomical Time Series: Constructing a Parsimonious Hypothesis Test. <i>Thirty Years of Astronomical Discovery With UKIRT</i> , 2016 , 105-107	0.3	
57	What Next for VST: Electromagnetic Follow-Up of Gravitational Waves Events. <i>Thirty Years of Astronomical Discovery With UKIRT</i> , 2016 , 297-302	0.3	1
56	ARE ULTRA-LONG GAMMA-RAY BURSTS DIFFERENT?. Astrophysical Journal, 2015, 800, 16	4.7	30
55	GAME: GRB and All-sky Monitor Experiment. <i>International Journal of Modern Physics D</i> , 2014 , 23, 14300	1 <u>0</u> .2	
54	A quiescent galaxy at the position of the long GRB 050219A. Astronomy and Astrophysics, 2014 , 572, A4	75.1	12
53	Fall back accretion and energy injections in gamma-ray bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 446, 3642-3650	4.3	17
52	The Large Observatory for x-ray timing 2014 ,		9
51	Constraining the rate and luminosity function of Swift gamma-ray bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 15-28	4.3	19
50	The LOFT contribution to GRB science. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 2013 , 239-240, 109-112		3
49	The seven yearSwift-XRT point source catalog (1SWXRT). <i>Astronomy and Astrophysics</i> , 2013 , 551, A142	5.1	39
48	THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT?. Astrophysical Journal, 2013 , 766, 30	4.7	126
47	THE ULTRA-LONG GRB 111209A. II. PROMPT TO AFTERGLOW AND AFTERGLOW PROPERTIES. Astrophysical Journal, 2013, 779, 66	4.7	59
46	The Swift gamma-ray burst redshift distribution: selection biases and optical brightness evolution at high z?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 2141-2149	4.3	41
45	LOFT: the Large Observatory For X-ray Timing 2012 ,		21
44	GRB 110205A: ANATOMY OF A LONG GAMMA-RAY BURST. Astrophysical Journal, 2012, 748, 59	4.7	25
43	The Swift short gamma-ray burst rate density: implications for binary neutron star merger rates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 2668-2673	4.3	100
42	UNUSUAL CENTRAL ENGINE ACTIVITY IN THE DOUBLE BURST GRB 110709B. <i>Astrophysical Journal</i> , 2012 , 748, 132	4.7	26
41	THE HIGHLY ENERGETIC EXPANSION OF SN 2010bh ASSOCIATED WITH GRB 100316D. Astrophysical Journal, 2012, 753, 67	4.7	94

(2008-2011)

40	Gamma-ray bursts afterglows with energy injection from a spinning down neutron star. <i>Astronomy and Astrophysics</i> , 2011 , 526, A121	5.1	112
39	GRB 100614A and GRB 100615A: two extremely dark gamma-ray bursts. <i>Astronomy and Astrophysics</i> , 2011 , 532, A48	5.1	6
38	The puzzling temporally variable optical and X-ray afterglow of GRB 101024A. <i>Astronomy and Astrophysics</i> , 2011 , 530, A74	5.1	2
37	The Swift serendipitous survey in deep XRT GRB fields (SwiftFT). <i>Astronomy and Astrophysics</i> , 2011 , 528, A122	5.1	27
36	The origin of the prompt optical emission in GRB 060111B. Advances in Space Research, 2011, 47, 1413-	14:145	
35	Is GRB 050904 at z = 6.3 absorbed by dust?. <i>Astronomy and Astrophysics</i> , 2011 , 532, A45	5.1	17
34	THE SPECTRAL ENERGY DISTRIBUTION OFFERMIBRIGHT BLAZARS. <i>Astrophysical Journal</i> , 2010 , 716, 30-70	4.7	580
33	Evidence for an anticorrelation between the duration of the shallow decay phase and the burst energetics 2010 ,		1
32	GRB 090902B: AFTERGLOW OBSERVATIONS AND IMPLICATIONS. Astrophysical Journal, 2010 , 714, 799	-84074	35
31	Evidence for an anticorrelation between the duration of the shallow decay phase of GRBIX-ray afterglows and redshift. <i>Astronomy and Astrophysics</i> , 2009 , 494, L9-L12	5.1	5
30	THE PROMPT, HIGH-RESOLUTION SPECTROSCOPIC VIEW OF THE NAKED-EYEIGRB080319B. <i>Astrophysical Journal</i> , 2009 , 694, 332-338	4.7	51
29	The TAROT archive: rising afterglows 2009 ,		3
28	A gamma-ray burst at a redshift of z approximately 8.2. <i>Nature</i> , 2009 , 461, 1254-7	50.4	458
27	FERMI OBSERVATIONS OF GRB 090902B: A DISTINCT SPECTRAL COMPONENT IN THE PROMPT AND DELAYED EMISSION. <i>Astrophysical Journal</i> , 2009 , 706, L138-L144	4.7	322
26	The optical afterglows and host galaxies of three short/hard gamma-ray bursts. <i>Astronomy and Astrophysics</i> , 2009 , 498, 711-721	5.1	64
25	A multiwavelength study of Swift GRB 060111B constraining the origin of its prompt optical emission. <i>Astronomy and Astrophysics</i> , 2009 , 503, 783-795	5.1	14
24	High energy variability of 3C 273 during the AGILE multiwavelength campaign of December 2007 anuary 2008. <i>Astronomy and Astrophysics</i> , 2009 , 494, 49-61	5.1	17
23	The complex light curve of the afterglow of GRB071010A. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 388, 347-356	4.3	41

22	Early emission of rising optical afterglows: the case of GRB 060904B and GRB 070420. <i>Astronomy and Astrophysics</i> , 2008 , 483, 847-855	5.1	22
21	The gamma-ray burst 050904: evidence for a termination shock?. <i>Astronomy and Astrophysics</i> , 2007 , 462, 565-573	5.1	33
20	X-ray flashes or soft gamma-ray bursts?. Astronomy and Astrophysics, 2007, 461, 485-492	5.1	7
19	Multicolor observations of the afterglow of the short/hard GRB 050724. <i>Astronomy and Astrophysics</i> , 2007 , 473, 77-84	5.1	49
18	UVES/VLT high resolution spectroscopy of GRB 050730 afterglow: probing the features of the GRB environment. <i>Astronomy and Astrophysics</i> , 2007 , 467, 629-639	5.1	41
17	GRBID70311: a direct link between the prompt emission and the afterglow. <i>Astronomy and Astrophysics</i> , 2007 , 474, 793-805	5.1	25
16	INTEGRAL high-energy monitoring of the X-ray burster KS 1741 293*. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 380, 615-620	4.3	9
15	Dust Properties at z = 6.3 in the Host Galaxy of GRB 050904. <i>Astrophysical Journal</i> , 2007 , 661, L9-L12	4.7	75
14	A study of the prompt and afterglow emission of the short GRB 061201. <i>Astronomy and Astrophysics</i> , 2007 , 474, 827-835	5.1	59
13	Detection of a Very Bright Optical Flare from the Gamma-Ray Burst GRB 050904 at Redshift 6.29. <i>Astrophysical Journal</i> , 2006 , 638, L71-L74	4.7	76
12	Continuous optical monitoring during the prompt emission of GRB 060111B. <i>Astronomy and Astrophysics</i> , 2006 , 451, L39-L42	5.1	41
11	Early re-brightening of the afterglow of GRBID50525a. Astronomy and Astrophysics, 2005, 439, L35-L38	5.1	31
10	Extinction properties of the X-ray bright/optically faint afterglow of GRB 020405. <i>Astronomy and Astrophysics</i> , 2005 , 441, 83-88	5.1	32
9	A Flash in the Dark: UVES Very Large Telescope High-Resolution Spectroscopy of Gamma-Ray Burst Afterglows. <i>Astrophysical Journal</i> , 2005 , 624, 853-867	4.7	63
8	Absorption in Gamma-Ray Burst Afterglows. Astrophysical Journal, 2004, 608, 846-864	4.7	110
7	A Comparative Study of the X-Ray Afterglow Properties of Optically Bright and Dark Gamma-Ray Bursts. <i>Astrophysical Journal</i> , 2003 , 592, 1018-1024	4.7	68
6	The X-ray absorber of PKS 2126-158. Astronomy and Astrophysics, 2003, 409, 57-64	5.1	8
5	Observation of X-ray lines from a gamma-ray burst (GRB991216): evidence of moving ejecta from the progenitor. <i>Science</i> , 2000 , 290, 955-8	33.3	204

LIST OF PUBLICATIONS

4	Iron line signatures in X-ray afterglows of GRB by BeppoSAX. <i>Astronomy and Astrophysics</i> , 1999 , 138, 431-432		20
3	GRB980613 a Very Faint Burst with a Not So Faint Afterglow Detected by BeppoSAX201-203		2
2	Multi-messenger astrophysics with THESEUS in the 2030s. Experimental Astronomy,1	1.3	2
1	Gamma ray burst studies with THESEUS. Experimental Astronomy,1	1.3	2