
Giulia Stratta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7686619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
3	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
4	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
5	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
6	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
7	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
8	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
9	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
10	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
11	THE SPECTRAL ENERGY DISTRIBUTION OF <i>FERMI</i> BRIGHT BLAZARS. Astrophysical Journal, 2010, 716, 30-70.	1.6	741
12	Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature, 2017, 551, 67-70.	13.7	715
13	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	13.7	674
14	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
15	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
16	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
17	A γ-ray burst at a redshift of z â‰^ 8.2. Nature, 2009, 461, 1254-1257.	13.7	535
18	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466

#	Article	IF	CITATIONS
19	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
20	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
21	<i>FERMI</i> OBSERVATIONS OF GRB 090902B: A DISTINCT SPECTRAL COMPONENT IN THE PROMPT AND DELAYED EMISSION. Astrophysical Journal, 2009, 706, L138-L144.	1.6	364
22	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
23	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
24	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	2.9	254
25	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
26	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
27	Observation of X-ray Lines from a Gamma-Ray Burst (GRB991216): Evidence of Moving Ejecta from the Progenitor. Science, 2000, 290, 955-958.	6.0	214
28	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
29	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
30	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	3.0	179
31	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
32	THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT?. Astrophysical Journal, 2013, 766, 30.	1.6	148
33	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
34	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	3.0	145
35	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
36	The THESEUS space mission concept: science case, design and expected performances. Advances in Space Research, 2018, 62, 191-244.	1.2	133

#	Article	IF	CITATIONS
37	Gamma-ray bursts afterglows with energy injection from a spinning down neutron star. Astronomy and Astrophysics, 2011, 526, A121.	2.1	132
38	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
39	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
40	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	2.9	119
41	Absorption in Gammaâ€Ray Burst Afterglows. Astrophysical Journal, 2004, 608, 846-864.	1.6	116
42	The Swift short gamma-ray burst rate density: implications for binary neutron star merger rates. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2668-2673.	1.6	108
43	eXTP: Enhanced X-ray Timing and Polarization mission. Proceedings of SPIE, 2016, , .	0.8	106
44	THE HIGHLY ENERGETIC EXPANSION OF SN 2010bh ASSOCIATED WITH GRB 100316D. Astrophysical Journal, 2012, 753, 67.	1.6	103
45	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
46	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	1.6	97
47	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	1.6	92
48	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	1.6	88
49	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85
50	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
51	Detection of a Very Bright Optical Flare from the Gamma-Ray Burst GRB 050904 at Redshift 6.29. Astrophysical Journal, 2006, 638, L71-L74.	1.6	82
52	Dust Properties at z = 6.3 in the Host Galaxy of GRB 050904. Astrophysical Journal, 2007, 661, L9-L12.	1.6	79
53	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
54	A Comparative Study of the Xâ€Ray Afterglow Properties of Optically Bright and Dark Gammaâ€Ray Bursts. Astrophysical Journal, 2003, 592, 1018-1024.	1.6	74

#	Article	IF	CITATIONS
55	The optical afterglows and host galaxies of three short/hard gamma-ray bursts. Astronomy and Astrophysics, 2009, 498, 711-721.	2.1	73
56	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
57	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
58	Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv. Astronomy and Astrophysics, 2020, 643, A113.	2.1	70
59	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
60	THE ULTRA-LONG GRB 111209A. II. PROMPT TO AFTERGLOW AND AFTERGLOW PROPERTIES. Astrophysical Journal, 2013, 779, 66.	1.6	67
61	A Flash in the Dark: UVES Very Large Telescope Highâ€Resolution Spectroscopy of Gammaâ€Ray Burst Afterglows. Astrophysical Journal, 2005, 624, 853-867.	1.6	65
62	A study of the prompt and afterglow emission of the short GRB 061201. Astronomy and Astrophysics, 2007, 474, 827-835.	2.1	64
63	On the Magnetar Origin of the GRBs Presenting X-Ray Afterglow Plateaus. Astrophysical Journal, 2018, 869, 155.	1.6	62
64	THESEUS: A key space mission concept for Multi-Messenger Astrophysics. Advances in Space Research, 2018, 62, 662-682.	1.2	56
65	THE PROMPT, HIGH-RESOLUTION SPECTROSCOPIC VIEW OF THE "NAKED-EYE―GRB080319B. Astrophysical Journal, 2009, 694, 332-338.	1.6	55
66	The seven year <i>Swift</i> -XRT point source catalog (1SWXRT). Astronomy and Astrophysics, 2013, 551, A142.	2.1	52
67	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
68	A comparison between short GRB afterglows and kilonova AT2017gfo: shedding light on kilonovae properties. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3379-3397.	1.6	52
69	Multicolor observations of the afterglow of the short/hard GRB 050724. Astronomy and Astrophysics, 2007, 473, 77-84.	2.1	50
70	Observatory science with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	50
71	The Swift gamma-ray burst redshift distribution: selection biases and optical brightness evolution at high z?. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2141-2149.	1.6	46
72	The complex light curve of the afterglow of GRB071010A . Monthly Notices of the Royal Astronomical Society, 2008, 388, 347-356.	1.6	44

#	Article	IF	CITATIONS
73	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
74	Continuous optical monitoring during the prompt emission of GRB 060111B. Astronomy and Astrophysics, 2006, 451, L39-L42.	2.1	43
75	UVES/VLT high resolution spectroscopy of GRB 050730 afterglow: probing the features of the GRB environment. Astronomy and Astrophysics, 2007, 467, 629-639.	2.1	42
76	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq0 0	0 rgBT /C 1.5	overlock 10 Tf 41
77	The Peculiar Short-duration GRB 200826A and Its Supernova*. Astrophysical Journal, 2022, 932, 1.	1.6	37
78	GRB 090902B: AFTERGLOW OBSERVATIONS AND IMPLICATIONS. Astrophysical Journal, 2010, 714, 799-804.	1.6	36
79	ARE ULTRA-LONG GAMMA-RAY BURSTS DIFFERENT?. Astrophysical Journal, 2015, 800, 16.	1.6	35
80	Extinction properties of the X-ray bright/optically faint afterglow of GRB 020405. Astronomy and Astrophysics, 2005, 441, 83-88.	2.1	34
81	The gamma-ray burst 050904: evidence for a termination shock?. Astronomy and Astrophysics, 2007, 462, 565-573.	2.1	34
82	UNUSUAL CENTRAL ENGINE ACTIVITY IN THE DOUBLE BURST GRB 110709B. Astrophysical Journal, 2012, 748, 132.	1.6	33
83	Early re-brightening of the afterglow of GRBÂ050525a. Astronomy and Astrophysics, 2005, 439, L35-L38.	2.1	32
84	The THESEUS space mission: science goals, requirements and mission concept. Experimental Astronomy, 2021, 52, 183-218.	1.6	32
85	The Swift serendipitous survey in deep XRT GRB fields (SwiftFT). Astronomy and Astrophysics, 2011, 528, A122.	2.1	31
86	LOFT: the Large Observatory For X-ray Timing. Proceedings of SPIE, 2012, , .	0.8	29
87	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
88	GRB 110205A: ANATOMY OF A LONG GAMMA-RAY BURST. Astrophysical Journal, 2012, 748, 59.	1.6	28
89	Accretion in strong field gravity with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	27
90	Early emission of rising optical afterglows: the case of GRB 060904B and GRB 070420. Astronomy and Astrophysics, 2008, 483, 847-855.	2.1	27

#	Article	IF	CITATIONS
91	The 80 Ms follow-up of the X-ray afterglow of GRB 130427A challenges the standard forward shock model. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1111-1122.	1.6	26
92	GRBÂ070311: a direct link between the prompt emission and the afterglow. Astronomy and Astrophysics, 2007, 474, 793-805.	2.1	25
93	Fall back accretion and energy injections in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2014, 446, 3642-3650.	1.6	21
94	Constraining the rate and luminosity function of Swift gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2014, 444, 15-28.	1.6	21
95	Iron line signatures in X-ray afterglows of GRB by BeppoSAX. Astronomy and Astrophysics, 1999, 138, 431-432.	2.1	20
96	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
97	A quiescent galaxy at the position of the long GRB 050219A. Astronomy and Astrophysics, 2014, 572, A47.	2.1	18
98	Is GRB 050904 at z = 6.3 absorbed by dust?. Astronomy and Astrophysics, 2011, 532, A45.	2.1	17
99	High energy variability of 3C 273 during the AGILE multiwavelength campaign of December 2007–January 2008. Astronomy and Astrophysics, 2009, 494, 49-61.	2.1	17
100	GW170817: implications for the local kilonova rate and for surveys from ground-based facilities. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4355-4360.	1.6	15
101	A multiwavelength study of Swift GRB 060111B constraining the origin of its prompt optical emission. Astronomy and Astrophysics, 2009, 503, 783-795.	2.1	14
102	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14
103	Multi-messenger astrophysics with THESEUS in the 2030s. Experimental Astronomy, 2021, 52, 245-275.	1.6	12
104	Can we quickly flag ultra-long gamma-ray bursts?. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2471-2476.	1.6	11
105	X-ray flashes or soft gamma-ray bursts?. Astronomy and Astrophysics, 2007, 461, 485-492.	2.1	10
106	The Large Observatory for x-ray timing. Proceedings of SPIE, 2014, , .	0.8	10
107	INTEGRAL high-energy monitoring of the X-ray burster KS 1741â~'293*. Monthly Notices of the Royal Astronomical Society, 2007, 380, 615-620.	1.6	9
108	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.1	9

#	Article	IF	CITATIONS
109	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.3	9
110	Gamma ray burst studies with THESEUS. Experimental Astronomy, 2021, 52, 277-308.	1.6	9
111	Synergies of THESEUS with the large facilities of the 2030s and guest observer opportunities. Experimental Astronomy, 2021, 52, 407-437.	1.6	8
112	The X-ray absorber of PKS 2126-158. Astronomy and Astrophysics, 2003, 409, 57-64.	2.1	8
113	GRB 100614A and GRB 100615A: two extremely dark gamma-ray bursts. Astronomy and Astrophysics, 2 532, A48.	0 <u>11</u> ,	7
114	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6
115	Evidence for an anticorrelation between the duration of the shallow decay phase of GRBÂX-ray afterglows and redshift. Astronomy and Astrophysics, 2009, 494, L9-L12.	2.1	5
116	The TAROT archive: rising afterglows. , 2009, , .		4
117	The LOFT contribution to GRB science. Nuclear Physics, Section B, Proceedings Supplements, 2013, 239-240, 109-112.	0.5	4
118	GRAWITA: VLT Survey Telescope observations of the gravitational wave sources GW150914 and GW151226. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	4
119	Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A. Galaxies, 2017, 5, 6.	1.1	3
120	Search for the optical counterpart of the GW170814 gravitational wave event with the VLT Survey Telescope. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1731-1754.	1.6	3
121	Breakthrough Multi-Messenger Astrophysics with the THESEUS Space Mission. Galaxies, 2022, 10, 60.	1.1	3
122	GRB980613 a Very Faint Burst with a Not So Faint Afterglow Detected by BeppoSAX. , 0, , 201-203.		2
123	The puzzling temporally variable optical and X-ray afterglow of GRB 101024A. Astronomy and Astrophysics, 2011, 530, A74.	2.1	2
124	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
125	Constraints to the nature of the central GRB engine from a comparative analysis of X-ray properties of afterglows. AIP Conference Proceedings, 2000, , .	0.3	1
126	Evidence for an anticorrelation between the duration of the shallow decay phase and the burst energetics. , 2010, , .		1

#	Article	IF	CITATIONS
127	What's Next for VST: Electromagnetic Follow-Up of Gravitational Waves Events. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 297-302.	0.3	1
128	Unveiling the enigma of ATLAS17aeu. Astronomy and Astrophysics, 2019, 621, A81.	2.1	1
129	Temporal and Spectral Analysis of X-Ray Afterglows of GRBs Observed by BeppoSAX. , 0, , 118-120.		1
130	Observation of the prompt and early afterglow of GRB 050904 by TAROT. AIP Conference Proceedings, 2006, , .	0.3	0
131	Near Infrared monitoring of the afterglow of the very bright Swift burst GRB 050525. AIP Conference Proceedings, 2006, , .	0.3	0
132	A study of the prompt and afterglow emission of the short GRB 061201. AIP Conference Proceedings, 2008, , .	0.3	0
133	The optical afterglows and host galaxies of three shortâ^hard gamma-ray bursts. , 2009, , .		0
134	The ASDC Multi Mission Interactive Archive: on line analysis of the Swiftâ^•XRT data. , 2010, , .		0
135	First generation of quasars. Nature, 2010, 464, 359-360.	13.7	0
136	The origin of the prompt optical emission in GRB 060111B. Advances in Space Research, 2011, 47, 1413-1415.	1.2	0
137	GAME: GRB and All-sky Monitor Experiment. International Journal of Modern Physics D, 2014, 23, 1430010.	0.9	0
138	Singular Spectrum Analysis for Astronomical Time Series: Constructing a Parsimonious Hypothesis Test. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 105-107.	0.3	0
139	THE MOST PROMISING ASTROPHYSICAL SOURCES OF ELECTROMAGNETIC AND GRAVITATIONAL RADIATION. , 2017, , 330-334.		0
140	GAME: GRB AND ALL-SKY MONITOR EXPERIMENT. , 2015, , .		0

9