Phung Le

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7686411/publications.pdf

Version: 2024-02-01

		516710	454955
53	960	16	30
papers	citations	h-index	g-index
53	53	53	1420
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Tailored <scp> HoFeO ₃ –Ho ₂ O ₃ </scp> hybrid perovskite nanocomposites as stable anode material for advanced lithiumâ€ion storage. International Journal of Energy Research, 2022, 46, 2051-2063.	4.5	10
2	Highâ€voltage performance of <scp> P2â€Na _x Mn ₀ </scp> _. <scp> ₅ O ₂ </scp> layered cathode material. International Journal of Energy Research, 2022, 46, 5119-5133.	4.5	2
3	Computational Fluid Dynamics-Based Numerical Analysis for Studying the Effect of Mini-Channel Cooling Plate, Flow Characteristics, and Battery Arrangement for Cylindrical Lithium-Ion Battery Pack. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	2.1	4
4	Investigating performance of full-cell using NaFe0.45Cu0.05Co0.5O2 cathode and hard carbon anode. Science and Technology, 2022, 60, 203-215.	0.2	1
5	<scp> Machine learning approach in exploring the electrolyte additives effect on cycling performance of LiNi ₀ </scp> _. <scp> ₁ </scp> _. <scp> ₅ O ₄ cathode and graphite anodeâ€based lithiumâ€ion cell </scp> . International Journal of Energy Research, 2021, 45, 4133-4144.	4.5	7
6	Cu-doped NaCu0.05Fe0.45Co0.5O2 as promising cathode material for Na-ion batteries: synthesis and characterization. Journal of Solid State Electrochemistry, 2021, 25, 767-775.	2.5	11
7	Lactate and acetate applied in dualâ€chamber microbial fuel cells with domestic wastewater. International Journal of Energy Research, 2021, 45, 10655-10666.	4.5	3
8	Effect of 3D Metal on Electrochemical Properties of Sodium Intercalation Cathode P2-NaxMe1/3Mn2/3O2 (M = Co, Ni, or Fe). Journal of Chemistry, 2021, 2021, 1-9.	1.9	2
9	Organic Positive Materials for Magnesium Batteries: A Review. Chemistry - A European Journal, 2021, 27, 9198-9217.	3.3	19
10	Frontispiece: Organic Positive Materials for Magnesium Batteries: A Review. Chemistry - A European Journal, 2021, 27, .	3.3	0
11	Machine learning technique-based data-driven model of exploring effects of electrolyte additives on LiNi0.6Mn0.2Co0.2O2/graphite cell. Journal of Energy Storage, 2021, 42, 103012.	8.1	2
12	Enhancing electrochemical performance of sodium Prussian blue cathodes for sodium-ion batteries via optimizing alkyl carbonate electrolytes. Ceramics International, 2021, 47, 30164-30171.	4.8	8
13	New Sodium Intercalation Cathode Prepared by Sodiation of Delithiated Host LiNi1/3Mn1/3Co1/3O2. Advances in Materials Science and Engineering, 2021, 2021, 1-10.	1.8	1
14	Electrochemical Properties and Ex Situ Study of Sodium Intercalation Cathode P2/P3-NaNi1/3Mn1/3Co1/3O2. Journal of Chemistry, 2021, 2021, 1-9.	1.9	2
15	Hybrid Deep Eutectic Solvent of LiTFSI-Ethylene Glycol Organic Electrolyte for Activated Carbon-Based Supercapacitors. Journal of Chemistry, 2021, 2021, 1-13.	1.9	2
16	Investigating on physical and electrochemical properties of high concentrated electrolytes based on LiBF4 salt for 5 V Li-ion rechargeable batteries. Tạp ChÃ-Khoa HỀ Và Cà ng Nghệ Việt Nam, 2021, 63, 12	-16.00	1
17	Electrochemical performance investigation of LiFePO4/C0.15-x (x=0.05, 0.1, 0.15 CNTs) electrodes at various calcination temperatures: Experimental and Intelligent Modelling approach. Electrochimica Acta, 2020, 330, 135314.	5.2	33
18	A study of the electrochemical kinetics of sodium intercalation in P2/O1/O3-NaNi1/3Mn1/3Co1/3O2. Journal of Solid State Electrochemistry, 2020, 24, 57-67.	2.5	12

#	Article	IF	Citations
19	Liâ€insertion into solâ€gel Na _{0.44} MnO ₂ cathode material for higher structure and electrochemical performance of batteries. Energy Storage, 2020, 2, e121.	4.3	4
20	Deep Eutectic Solvent Based on Lithium Bis[(trifluoromethyl)sulfonyl] Imide (LiTFSI) and 2,2,2-Trifluoroacetamide (TFA) as a Promising Electrolyte for a High Voltage Lithium-Ion Battery with a LiMn ₂ O ₄ Cathode. ACS Omega, 2020, 5, 23843-23853.	3.5	32
21	Excellent Cycling Stability of Sodium Anode Enabled by a Stable Solid Electrolyte Interphase Formed in Etherâ€Based Electrolytes. Advanced Functional Materials, 2020, 30, 2001151.	14.9	60
22	Strategy for Long Cycling Performance of Graphite/LiNi1/3Mn1/3Co1/3O2 Full-Cell Through High-Efficiency Slurry Preparation. Journal of the Electrochemical Society, 2020, 167, 160533.	2.9	2
23	Performance of full-cell Na-ion with NaNi1/3Mn1/3Co1/3O2 cathode material and different carbonate-based electrolytes. Science and Technology Development Journal - Natural Sciences, 2020, 4, First.	0.0	1
24	A Coupled Mechanical–Electrochemical Study of Li-Ion Battery Based on Genetic Programming and Experimental Validation. Journal of Electrochemical Energy Conversion and Storage, 2019, 16, .	2.1	6
25	Carbonate Solvents and Ionic Liquid Mixtures as an Electrolyte to Improve Cell Safety in Sodium-Ion Batteries. Journal of Chemistry, 2019, 2019, 1-10.	1.9	13
26	Structure and Electrochemical Properties of Li4Ti5O12 Prepared via Low-Temperature Precipitation. Journal of Chemistry, 2019, 2019, 1-7.	1.9	5
27	Precision Manufacturing of NaNi1/3Mn1/3Co1/3O2 Cathodes: Study of Structure Evolution and Performance at Varied Calcination Temperatures. Journal of Electronic Materials, 2019, 48, 5301-5309.	2.2	9
28	Electrode Composite LiFePO ₄ @Carbon: Structure and Electrochemical Performances. Journal of Nanomaterials, 2019, 2019, 1-10.	2.7	13
29	Sodium ion conducting gel polymer electrolyte using poly(vinylidene fluoride hexafluoropropylene). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 241, 27-35.	3.5	23
30	Structure and Electrochemical Behavior of Minor Mn-Doped Olivine LiMn _{<i>x</i>} Fe _{1â^'<i>x</i>} PO ₄ . Journal of Chemistry, 2019, 2019, 1-10.	1.9	7
31	SnO2 nanosheets/graphite oxide/g-C3N4 composite as enhanced performance anode material for lithium ion batteries. Chemical Physics Letters, 2019, 715, 284-292.	2.6	27
32	Carbon-coated LiFePO4–carbon nanotube electrodes for high-rate Li-ion battery. Journal of Solid State Electrochemistry, 2018, 22, 2247-2254.	2.5	29
33	Design and analysis of capacity models for Lithium-ion battery. Measurement: Journal of the International Measurement Confederation, 2018, 120, 114-120.	5.0	50
34	Experimental and optimization of material synthesis process parameters for improving capacity of lithium-ion battery. International Journal of Energy Research, 2018, 42, 3400-3409.	4.5	7
35	Promising electrode material using Ni-doped layered manganese dioxide for sodium-ion batteries. Journal of Applied Electrochemistry, 2018, 48, 793-800.	2.9	10
36	Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles. Resources, Conservation and Recycling, 2018, 136, 198-208.	10.8	184

#	Article	IF	Citations
37	Robust model for optimization of forming process for metallic bipolar plates of cleaner energy production system. International Journal of Hydrogen Energy, 2018, 43, 341-353.	7.1	13
38	Mixing ionic liquids and ethylene carbonate as safe electrolytes for lithium-ion batteries. Journal of Molecular Liquids, 2018, 271, 769-777.	4.9	35
39	Electrochemical Na-Migration into Delithiated Phase LizNi1/3Mn1/3Co1/3O2: Structure and Electrochemical Properties. Journal of the Electrochemical Society, 2018, 165, A1558-A1562.	2.9	2
40	Facile Solution Route to Synthesize Nanostructure Li ₄ Ti ₅ O ₁₂ for High Rate Li-lon Battery. Journal of Nanomaterials, 2016, 2016, 1-7.	2.7	4
41	Electrochemical properties of non-stoichiometric nanocrystalline Li ₄ Mn ₅ O ₁₂ for hybrid capacitors. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 015012.	1.5	1
42	Fabrication of Cathode Materials Based on Limn2o4/Cnt and Lini0.5mn1.5o4/Cnt Nanocomposites for Lithium $\hat{a} \in \mathbb{C}$ Ion Batteries Application. Materials Research, 2015, 18, 1044-1052.	1.3	6
43	Nanoflake Manganese Oxide and Nickel-Manganese Oxide Synthesized by Electrodeposition for Electrochemical Capacitor. Journal of Nanomaterials, 2015, 2015, 1-12.	2.7	15
44	Fluorinated Carbamates as Suitable Solvents for LiTFSI-Based Lithium-Ion Electrolytes: Physicochemical Properties and Electrochemical Characterization. Journal of Physical Chemistry C, 2015, 119, 22404-22414.	3.1	30
45	Liquid Electrolytes Based on Ionic Liquids for Lithium-Ion Batteries. Journal of Solution Chemistry, 2015, 44, 2332-2343.	1.2	19
46	Capacitance behavior of nanostructured <i>iµ</i> -MnO ₂ /C composite electrode using different carbons matrix. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 025005.	1.5	15
47	Synthesis, Properties and Performance of Platinum and Platinum/Carbon Nanotube Films as Cathode Materials for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2014, 161, H235-H239.	2.9	3
48	Nanostructured composite electrode based on manganese dioxide and carbon vulcan–carbon nanotubes for an electrochemical supercapacitor. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 035004.	1.5	16
49	A novel method for preparing microfibrillated cellulose from bamboo fibers. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 015016.	1.5	40
50	Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 045007.	1.5	76
51	Investigation of positive electrode materials based on MnO2for lithium batteries. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 025014.	1.5	3
52	Structureâ^'Properties Relationships of Lithium Electrolytes Based on Ionic Liquid. Journal of Physical Chemistry B, 2010, 114, 894-903.	2.6	80
53	Fabricating Nanostructured HoFeO ₃ Perovskite for Lithium-lon Battery Anodes via Co-Precipitation. SSRN Electronic Journal, 0, , .	0.4	0