
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7686293/publications.pdf Version: 2024-02-01

Δεςμινι Μορλοι

#	Article	IF	CITATIONS
1	Electromagnetic energy density in hyperbolic metamaterials. Scientific Reports, 2022, 12, .	1.6	4
2	Electrostatic waves in photonic hypercrystals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 387, 127008.	0.9	17
3	Longitudinal quasi-electrostatic waves in hyperbolic metasurfaces. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 391, 127103.	0.9	4
4	Dispersive electrostatic waves on a cold magnetized electron gas half-space. Physics of Plasmas, 2021, 28, .	0.7	6
5	Distribution of electromagnetic energy density in a dispersive and dissipative metamaterial. Journal of Modern Optics, 2021, 68, 634-640.	0.6	8
6	Strongly direction-dependent magnetoplasmons in mixed Faraday–Voigt configurations. Scientific Reports, 2021, 11, 18373.	1.6	8
7	Group velocity of bulk magnetoplasmons in electric-gyrotropic thin films: Faraday configuration. Results in Physics, 2021, 31, 104973.	2.0	1
8	Electrostatic theory of rectangular waveguides filled with anisotropic media. Scientific Reports, 2021, 11, 24522.	1.6	8
9	Reflection of Electrostatic Waves on Plane Interface Between Magnetized Plasma and Insulator. IEEE Transactions on Plasma Science, 2020, 48, 2687-2690.	0.6	7
10	Optical properties of two-walled carbon nanotubes: quasi-static approximation. European Physical Journal Plus, 2020, 135, 1.	1.2	6
11	Electrostatic Wave Propagation in 1-D Magnetized Plasma Periodic Structures. IEEE Transactions on Plasma Science, 2020, 48, 3776-3780.	0.6	4
12	Electrostatic wave propagation in an array of metallic wires. Physics of Plasmas, 2020, 27, 064502.	0.7	10
13	Energy relations of plasma waves in planar twoâ€dimensional electronâ€ion plasmas. Contributions To Plasma Physics, 2020, 60, e202000031.	0.5	2
14	Surface and bulk plasmons in cylindrical electric-gyrotropic wires. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2947.	0.9	6
15	Electrostatic Dyakonov-like surface waves supported by metallic nanowire-based hyperbolic metamaterials. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2976.	0.9	15
16	Problems in Electromagnetic Theory. Springer Series in Optical Sciences, 2020, , 95-149.	0.5	0
17	Electrostatic Problems Involving Two-Dimensional Electron Gases in Cylindrical Geometry. Springer Series in Optical Sciences, 2020, , 271-301.	0.5	0
18	Electrostatic Problems Involving Two-Dimensional Electron Gases in Planar Geometry. Springer Series in Optical Sciences, 2020, , 209-238.	0.5	0

#	Article	IF	CITATIONS
19	Problems in Electrostatic Approximation: Spatial Nonlocal Effects. Springer Series in Optical Sciences, 2020, , 151-180.	0.5	0
20	Basic Concepts and Formalism. Springer Series in Optical Sciences, 2020, , 3-29.	0.5	0
21	Electromagnetic Problems Involving Two-Dimensional Electron Gases in Planar Geometry. Springer Series in Optical Sciences, 2020, , 239-270.	0.5	1
22	Problems in Electromagnetic Theory: Spatial Nonlocal Effects. Springer Series in Optical Sciences, 2020, , 181-205.	0.5	0
23	Electromagnetic Problems Involving Two-Dimensional Electron Gases in Cylindrical Geometry. Springer Series in Optical Sciences, 2020, , 303-323.	0.5	0
24	Boundary-Value Problems Involving Two-Dimensional Electron Gases in Spherical Geometry. Springer Series in Optical Sciences, 2020, , 325-346.	0.5	0
25	Propagation of electrostatic energy through a quantum plasma. Contributions To Plasma Physics, 2019, 59, 173-180.	0.5	8
26	Plasmonic waves of graphene on a conducting substrate. Journal of Modern Optics, 2019, 66, 353-357.	0.6	8
27	Energy density and energy flow of surface waves in a strongly magnetized graphene. Journal of Applied Physics, 2018, 123, 043103.	1.1	13
28	Electromagnetic energy within an isolated C 60 molecule. Optik, 2018, 164, 100-104.	1.4	0
29	Energy behaviour of extraordinary waves in magnetized quantum plasmas. Physics of Plasmas, 2018, 25, 052123.	0.7	6
30	Energy density and energy flow of magnetoplasmonic waves on graphene. Solid State Communications, 2017, 253, 63-66.	0.9	16
31	Energy density and energy flow of plasmonic waves in bilayer graphene. Optics Communications, 2017, 394, 135-138.	1.0	12
32	Electrostatic Surface Waves on Semi-Bounded Quantum Electron-Hole Semiconductor Plasmas. Communications in Theoretical Physics, 2017, 67, 317.	1.1	7
33	Damping properties of plasmonic waves on graphene. Physics of Plasmas, 2017, 24, 072114.	0.7	12
34	Bohm potential and inequality of group and energy transport velocities of plasmonic waves on metal-insulator waveguides. Physics of Plasmas, 2017, 24, 072104.	0.7	5
35	Comment on "Effects of electron exchange-correlation potential on electrostatic oscillations in single-walled carbon nanotubes―[J. Appl. Phys. 115, 204304 (2014)]. Journal of Applied Physics, 2017, 121, 176101.	1.1	2
36	Theory of Goos-Hächen shift in graphene: Energy-flux method. Europhysics Letters, 2017, 120, 67002.	0.7	6

#	Article	IF	CITATIONS
37	Theory of energy and power flow of plasmonic waves on single-walled carbon nanotubes. Journal of Applied Physics, 2017, 122, .	1.1	11
38	Comment on "Surface electromagnetic wave equations in a warm magnetized quantum plasma―[Phys. Plasmas 21, 072114 (2014)]. Physics of Plasmas, 2016, 23, 074701.	0.7	3
39	Low-frequency surface waves on semi-bounded magnetized quantum plasma. Physics of Plasmas, 2016, 23, .	0.7	5
40	Surface and bulk plasmons of electron-hole plasma in semiconductor nanowires. Physics of Plasmas, 2016, 23, 114503.	0.7	5
41	Comment on "Propagation of surface waves on a semi-bounded quantum magnetized collisional plasma―[Phys. Plasmas 20, 122106 (2013)]. Physics of Plasmas, 2016, 23, 044701.	0.7	3
42	Effective medium theory for a system of C60 molecules. Physics of Plasmas, 2016, 23, 062120.	0.7	4
43	Electrostatic surface waves on a magnetized quantum plasma half-space. Physics of Plasmas, 2016, 23, 034501.	0.7	5
44	Collective excitations of spherical semiconductor nanoparticles. Physica Scripta, 2016, 91, 105802.	1.2	4
45	Surface polaritons of a metal-insulator-metal curved slab. Superlattices and Microstructures, 2016, 97, 335-340.	1.4	2
46	High-Frequency Waves in a Random Distribution of Metallic Nanoparticles in an External Magnetic Field. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2016, 71, 849-854.	0.7	2
47	Comment on "Propagation of a TE surface mode in a relativistic electron beam–quantum plasma system―[Phys. Lett. A 376 (2012) 169]. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 2580-2581.	0.9	3
48	Quantum nonlocal polarizability of spherical metal nanoparticles. International Journal of Modern Physics B, 2016, 30, 1650048.	1.0	3
49	Effective permittivity of single-walled carbon nanotube composites: Two-fluid model. Physics of Plasmas, 2015, 22, 122104.	0.7	3
50	Extinction properties of metallic nanowires: Quantum diffraction and retardation effects. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2379-2383.	0.9	9
51	Spatial nonlocality in the infrared absorption spectra of polar semiconductor nanospheres. Semiconductor Science and Technology, 2015, 30, 115003.	1.0	3
52	Dispersion Properties of High- and Low-Frequency Electrostatic Oscillations of Plasma Spheres: Application to the Metallic Nanoparticles. Communications in Theoretical Physics, 2015, 64, 571-575.	1.1	3
53	Plasmon Hybridization in a Symmetry-Broken Metallic Nanotube Above a Substrate. Plasmonics, 2015, 10, 999-1003.	1.8	0
54	Quantum nonlocal effects on optical properties of spherical nanoparticles. Physics of Plasmas, 2015, 22, .	0.7	16

#	Article	IF	CITATIONS
55	Quantum effects on propagation of bulk and surface waves in a thin quantum plasma film. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1139-1143.	0.9	16
56	Plasmonic waves of random metal-dielectric nanocomposite films. Photonics and Nanostructures - Fundamentals and Applications, 2015, 15, 41-45.	1.0	5
57	Surface plasmon oscillations on a quantum plasma half-space. Physics of Plasmas, 2015, 22, 014501.	0.7	26
58	Maxwell-Garnett effective medium theory: Quantum nonlocal effects. Physics of Plasmas, 2015, 22, .	0.7	16
59	Quantum ion-acoustic wave oscillations on a quantum plasma half-space. Physica Scripta, 2015, 90, 085601.	1.2	8
60	Plasmon modes of metallic nanowires including quantum nonlocal effects. Physics of Plasmas, 2015, 22, 032112.	0.7	16
61	Quantum ion-acoustic wave oscillations in metallic nanowires. Physics of Plasmas, 2015, 22, 054502.	0.7	3
62	Infrared absorption spectra of a spatially dispersive polar semiconductor nanowire. Solid State Communications, 2015, 212, 10-13.	0.9	2
63	Quantum Nonlocal Polarizability of Metallic Nanowires. Plasmonics, 2015, 10, 1225-1230.	1.8	5
64	Plasmon modes of spherical nanoparticles: The effects of quantum nonlocality. Surface Science, 2015, 637-638, 53-57.	0.8	9
65	Optical properties of random metal-dielectric nanocomposite films: nanoparticle size effects. Physica Scripta, 2015, 90, 095803.	1.2	5
66	Comment on: "A theoretical model to explain the mechanism of light wave propagation through non-metallic nanowires―[Opt. Commun. 283 (2010) 4085]. Optics Communications, 2015, 357, 193-194.	1.0	2
67	Electromagnetic wave propagation in a random distribution of C60 molecules. Physics of Plasmas, 2014, 21, 104508.	0.7	5
68	Surface plasmon modes of a nanoegg above a substrate. Journal of Chemical Physics, 2014, 141, 124121.	1.2	5
69	Extinction properties of single-walled carbon nanotubes: Two-fluid model. Physics of Plasmas, 2014, 21, 032106.	0.7	14
70	Plasmonic modes and extinction properties of a random nanocomposite cylinder. Physics of Plasmas, 2014, 21, 042112.	0.7	5
71	Plasmon Spectra of Cylindrical Nanostructures Including Nonlocal Effects. Plasmonics, 2014, 9, 209-218.	1.8	14
72	Multipole plasmon excitations of C60 dimers. Journal of Chemical Physics, 2014, 141, 024111.	1.2	8

AFSHIN MORADI

#	Article	IF	CITATIONS
73	Extinction properties of an isolated C60 molecule. Solid State Communications, 2014, 192, 24-26.	0.9	14
74	Fast electron beam–plasma interaction in single-walled carbon nanotubes. Applied Physics B: Lasers and Optics, 2013, 111, 127-130.	1.1	9
75	Coupled Surface Plasmon-Polariton Modes of Metallic Single-Walled Carbon Nanotubes. Plasmonics, 2013, 8, 1509-1513.	1.8	7
76	Light conduction of metallic two-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2013, 113, 97-100.	1.1	7
77	Scattering by an array of parallel metallic carbon nanotubes. Chinese Physics B, 2013, 22, 064201.	0.7	3
78	Plasmonic waves of a semi-infinite random nanocomposite. Physics of Plasmas, 2013, 20, 104507.	0.7	6
79	Surface plasmon–polariton modes of metallic single-walled carbon nanotubes. Photonics and Nanostructures - Fundamentals and Applications, 2013, 11, 85-88.	1.0	19
80	A Theoretical Model to Explain the Mechanism of Electromagnetic Wave Propagation Along Cylindrical Micelles. Communications in Theoretical Physics, 2013, 60, 136-138.	1.1	1
81	Plasmon-optical phonon hybridization in polar semiconductor nano-wires. Semiconductor Science and Technology, 2013, 28, 125005.	1.0	5
82	Plasmon hybridization in coated metallic nanowires. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 625.	0.9	24
83	Geometrical tunability of plasmon excitations of double concentric metallic nanotubes. Physics of Plasmas, 2012, 19, 062102.	0.7	5
84	Optical scattering by a spherical two-dimensional electron gas: Application to the C60 molecule. Optik, 2012, 123, 325-328.	1.4	7
85	Transverse magnetic wave propagation along flat biological membranes. Optik, 2012, 123, 1343-1345.	1.4	0
86	Guided waves characteristics of multi-walled carbon nanotubes. Optics Communications, 2012, 285, 1163-1166.	1.0	1
87	Line-source scattering properties of metallic carbon nanotubes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 1920.	0.8	1
88	Transverse Magnetic Wave Propagation in a Bundle of Carbon Nanotubes. AIP Conference Proceedings, 2011, , .	0.3	0
89	Electrostatic Oscillations Along Cylindrical Micelles. Journal of Membrane Biology, 2011, 242, 105-107.	1.0	2
90	Scattering cross section of metallic two-walled carbon nanotubes. Optics Communications, 2011, 284, 2629-2632.	1.0	8

#	Article	IF	CITATIONS
91	Microwave shielding of HiPco carbon nanotube films. Journal of Plasma Physics, 2011, 77, 639-651.	0.7	2
92	Ionic electrostatic excitations along biological membranes. Physics of Plasmas, 2011, 18, .	0.7	4
93	Plasmon hybridization in parallel nano-wire systems. Physics of Plasmas, 2011, 18, 064508.	0.7	10
94	Scattering properties of metallic carbon nanotubes in the presence of dielectric media. Journal of Modern Optics, 2011, 58, 1566-1571.	0.6	3
95	Guided dispersion characteristics of metallic single-walled carbon nanotubes in the presence of dielectric media. Optics Communications, 2010, 283, 160-163.	1.0	20
96	Plasmon hybridization in tubular metallic nanostructures. Physica B: Condensed Matter, 2010, 405, 2466-2469.	1.3	14
97	Theory of Carbon Nanotubes as Optical Nano Waveguides. Journal of Electromagnetic Analysis and Applications, 2010, 02, 672-676.	0.1	8
98	Investigation of high- and low-frequency electrostatic oscillations in multishell fullerenes. Physica Scripta, 2010, 81, 055701.	1.2	3
99	Oblique incidence scattering from single-walled carbon nanotubes. Physics of Plasmas, 2010, 17, 033504.	0.7	14
100	Comment on "Microwave attenuation of hydrogen plasma in carbon nanotubes―[J. Appl. Phys. 104, 124315 (2008)]. Journal of Applied Physics, 2010, 107, 066104.	1.1	5
101	Microwave response of magnetized hydrogen plasma in carbon nanotubes: multiple reflection effects. Applied Optics, 2010, 49, 1728.	2.1	10
102	Dispersion properties of electrostatic sound wave modes in carbon nanotubes. Physics of Plasmas, 2010, 17, 014504.	0.7	8
103	Microwave absorption of magnetized hydrogen plasma in carbon nanotubes. Physics of Plasmas, 2009, 16, 113501.	0.7	8
104	Comment on "The single-wall carbon nanotube waveguides and excitation of their σ+π plasmons by an electron beam―[Phys. Plasmas 16, 022108 (2009)]. Physics of Plasmas, 2009, 16, 054705.	0.7	6
105	Comment on "Study of geometrical effects on the characteristics of metallic double-walled carbon nanotube waveguides through quantum hydrodynamics―[Phys. Plasmas 16, 063501 (2009)]. Physics of Plasmas, 2009, 16, .	0.7	0
106	Magnetostatic modes hybridization in left-handed cylindrical shells. Physica Scripta, 2009, 79, 045801.	1.2	2
107	Plasmon hybridization in metallic nanotubes with a nonconcentric core. Optics Communications, 2009, 282, 3368-3370.	1.0	22
108	Quantum ion-acoustic wave oscillations in molecule. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1338-1339.	1.3	18

AFSHIN MORADI

#	Article	IF	CITATIONS
109	Dust ion-acoustic wave oscillations in single-walled carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 42, 43-45.	1.3	7
110	Electron–ion quantum plasma excitations in single-walled carbon nanotubes. Journal of Physics Condensed Matter, 2009, 21, 045303.	0.7	22
111	Electron–hole plasma excitations in single-walled carbon nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5614-5616.	0.9	16
112	Plasmon hybridization in metallic nanotubes. Journal of Physics and Chemistry of Solids, 2008, 69, 2936-2938.	1.9	43
113	Collective excitations in single-walled carbon nanotubes. Physical Review B, 2007, 76, .	1.1	29
114	Comment on: "Electromagnetic wave propagation in single-wall carbon nanotubes―[Phys. Lett. A 333 (2004) 303]. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 364, 515-516.	0.9	21
115	Plasmon dispersion in metallic carbon nanotubes in the presence of low-frequency electromagnetic radiation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 371, 1-6.	0.9	30
116	Electrostatic bulk waves propagation in a slab delay line of metallic nanowire-based hyperbolic metamaterials. Waves in Random and Complex Media, 0, , 1-13.	1.6	6