Giuseppe Bellussi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7686214/publications.pdf

Version: 2024-02-01

126907 79698 5,379 82 33 73 citations g-index h-index papers 96 96 96 3385 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. Journal of Catalysis, 1991, 129, 159-167.	6.2	715
2	Reactions of titanium silicalite with protic molecules and hydrogen peroxide. Journal of Catalysis, 1992, 133, 220-230.	6.2	365
3	Progress toward Understanding Zeolite .beta. Acidity: An IR and 27Al NMR Spectroscopic Study. The Journal of Physical Chemistry, 1994, 98, 4627-4634.	2.9	342
4	Liquid-Phase Alkylation of Benzene with Light Olefins Catalyzed by Î ² -Zeolites. Journal of Catalysis, 1995, 157, 227-234.	6.2	288
5	Production of titanium containing molecular sieves and their application in catalysis. Applied Catalysis A: General, 2001, 221, 63-72.	4.3	281
6	Titanium-Silicalite: a Novel Derivative in the Pentasil Family. Studies in Surface Science and Catalysis, 1986, 28, 129-136.	1.5	278
7	Metal lons Associated to the Molecular Sieve Framework: Possible Catalytic Oxidation Sites. Studies in Surface Science and Catalysis, 1994, , 177-213.	1.5	265
8	Acidic Properties of Hâ^²Î² Zeolite As Probed by Bases with Proton Affinity in the 118â^²204 kcal mol-1 Range:  A FTIR Investigation. Journal of Physical Chemistry B, 1997, 101, 4740-4751.	' 2.6	227
9	Layered structure of ERB-1 microporous borosilicate precursor and its intercalation properties towards polar molecules. Microporous Materials, 1995, 4, 221-230.	1.6	214
10	Hydroconversion of heavy residues in slurry reactors: Developments and perspectives. Journal of Catalysis, 2013, 308, 189-200.	6.2	172
11	Synthesis and characterization of boronâ€containing molecular sieves. Topics in Catalysis, 1999, 9, 13-34.	2.8	119
12	Mesoporous silica-aluminas as catalysts for the alkylation of aromatic hydrocarbons with olefins. Microporous and Mesoporous Materials, 1999, 27, 345-354.	4.4	103
13	Experimental and computational study of beta, ZSM-12, Y, mordenite and ERB-1 in cumene synthesis. Microporous Materials, 1996, 6, 395-404.	1.6	99
14	New trends in the synthesis of crystalline microporous materials. Catalysis Science and Technology, 2013, 3, 833-857.	4.1	96
15	Stability of Ti in MFI and Beta structures: a comparative study. Microporous and Mesoporous Materials, 1999, 30, 137-144.	4.4	94
16	Amorphous mesoporous silica-alumina with controlled pore size as acid catalysts. Studies in Surface Science and Catalysis, 1994, , 85-92.	1.5	91
17	A priori selection of shape-selective zeolite catalysts for the synthesis of 2,6-dimethylnaphthalene. Journal of Catalysis, 2003, 217, 298-309.	6.2	88
18	Isomorphous Substitution in Zeolites: A Route for the Preparation of Novel Catalysts. Studies in Surface Science and Catalysis, 1991, 69, 79-92.	1.5	87

#	Article	IF	CITATIONS
19	Chapter 19 Metal ions associated to molecular sieve frameworks as catalytic sites for selective oxidation reactions. Studies in Surface Science and Catalysis, 2001, , 911-955.	1.5	74
20	The role of MoS ₂ nano-slabs in the protection of solid cracking catalysts for the total conversion of heavy oils to good quality distillates. Catalysis Science and Technology, 2013, 3, 176-182.	4.1	74
21	Oligomerization of olefins from Light Cracking Naphtha over zeolite-based catalyst for the production of high quality diesel fuel. Microporous and Mesoporous Materials, 2012, 164, 127-134.	4.4	71
22	Industrial applications of zeolite catalysis: production and uses of light olefins. Studies in Surface Science and Catalysis, 2005, 158, 1201-1212.	1.5	63
23	ECSâ€3: A Crystalline Hybrid Organic–Inorganic Aluminosilicate with Open Porosity. Angewandte Chemie - International Edition, 2012, 51, 666-669.	13.8	61
24	ERS-12: A new layered tetramethylammonium silicate composed by ferrierite layers. Microporous and Mesoporous Materials, 2004, 74, 59-71.	4.4	59
25	Synthesis and comparative characterization of Al, B, Ga, and Fe containing Nu-1-type zeolitic framework. Zeolites, 1990, 10, 642-649.	0.5	57
26	High pressure X-ray diffraction of thorium to 30 GPa. Journal of the Less Common Metals, 1981, 78, 147-153.	0.8	49
27	Double Substitution in Silicalite by Direct Synthesis: A New Route to Crystalline Porous Bifunctional Catalysts. Studies in Surface Science and Catalysis, 1991, 63, 421-429.	1.5	46
28	On the Properties of Pure and Isomorphic-Substituted Zeolites in the Presence of Gaseous Oxygen: Selective Transformation of Propane. Studies in Surface Science and Catalysis, 1989, 49, 1243-1252.	1.5	42
29	Catalytic ring opening of decalin on Ir- and Pt-containing zeolite Y – Influence of the nature of the charge-compensating alkali cations. Microporous and Mesoporous Materials, 2011, 146, 190-200.	4.4	42
30	Crystalline hybrid organic–inorganic alumino-silicates. Microporous and Mesoporous Materials, 2008, 113, 252-260.	4.4	39
31	Zeolite science and technology at Eni. New Journal of Chemistry, 2016, 40, 4061-4077.	2.8	38
32	The synthesis of the new zeolite, ERS-7, and the determination of its structure by simulated annealing and synchrotron X-ray powder diffraction. Chemical Communications, 1998, , 1725-1726.	4.1	35
33	A highly crystalline microporous hybrid organic–inorganic aluminosilicate resembling the AFI-type zeolite. Chemical Communications, 2012, 48, 7356.	4.1	33
34	Zeolite synthesis in the presence of azonia-spiro compounds as structure-directing agents. Microporous and Mesoporous Materials, 1998, 24, 199-211.	4.4	32
35	Structural characterization of as-synthesized B- and Ti-containing MFI-type molecular sieves. Microporous and Mesoporous Materials, 2000, 35-36, 387-403.	4.4	30
36	Transalkylation of m-diethylbenzene over large-pore zeolites. Applied Catalysis A: General, 1995, 121, 261-272.	4.3	27

#	Article	IF	CITATIONS
37	The origin of the band at 1462 cm?1 generally appearing upon desorption of pyridine from acidic solids. Steps towards a more comprehensive understanding. Catalysis Letters, 1995, 35, 125-133.	2.6	26
38	Amorphous aluminosilicate catalysts for hydroxyalkylation of aniline and phenol. Applied Catalysis A: General, 2006, 307, 128-136.	4.3	26
39	Ethane–silica hybrid material with ordered hexagonal mesoporous structure. Microporous and Mesoporous Materials, 2006, 87, 185-191.	4.4	25
40	Silica–aluminas for carbon dioxide bulk removal from sour natural gas. Microporous and Mesoporous Materials, 2011, 146, 134-140.	4.4	25
41	Hybrid organic–inorganic zeolites: status and perspectives. Catalysis Science and Technology, 2016, 6, 2502-2527.	4.1	25
42	ERS-18: A new member of the NON–EUO–NES zeolite family. Microporous and Mesoporous Materials, 2011, 143, 6-13.	4.4	24
43	Synthesis and Characterization of Molecular Sieves Containing Transition Metals in the Framework. Molecular Sieves - Science and Technology, 1998, , 187-228.	0.2	23
44	Influence of isobutane on the formation of alkenyl carbenium ions from 1-butene over La-beta zeolite. Applied Catalysis A: General, 1995, 126, 401-410.	4.3	22
45	B-containing molecular sieves crystallized in the presence of ethylenediamine. Part I: crystal structure of as-synthesized B-FER. Microporous and Mesoporous Materials, 2002, 56, 193-202.	4.4	21
46	Synthesis and characterization of a potassium borosilicate with ANA framework type structure. Microporous Materials, 1993 , 1 , $9-15$.	1.6	20
47	ERS-8: a new class of microporous aluminosilicates. Studies in Surface Science and Catalysis, 1997, , 205-212.	1.5	20
48	High pressure hydrogen sulphide adsorption on silica–aluminas. Chemical Engineering Journal, 2012, 210, 398-403.	12.7	20
49	B-containing molecular sieves crystallized in the presence of ethylenediamine. Part II: crystal structure of as-synthesized B-MFI. Microporous and Mesoporous Materials, 2003, 58, 213-223.	4.4	17
50	Ring Opening of Methylcyclohexane over Platinum‣oaded Zeolites. ChemSusChem, 2008, 1, 548-557.	6.8	17
51	5–1 SBU Based Zeolites from Wholly Inorganic Systems Studies in Surface Science and Catalysis, 1988, 37, 37-44.	1.5	16
52	Synthesis of a new porous borosilicate with the levyne structure. Zeolites, 1992, 12, 265-268.	0.5	14
53	Adsorption of propene, benzene, their mixtures and cumene on H-beta zeolites studied by IR and UV-VIS spectroscopy. Studies in Surface Science and Catalysis, 1995, 94, 405-412.	1.5	14
54	Vanadium mixed oxide catalysts for the oxidative coupling of methane. Applied Catalysis A: General, 1992, 83, 235-250.	4.3	13

#	Article	IF	CITATIONS
55	Ethylation of ethylbenzene over some aluminosilicates with molecular sieve structure. Applied Catalysis A: General, 1993, 103, 173-182.	4.3	13
56	Framework Topology of ERS-10 Zeolite. Angewandte Chemie - International Edition, 2002, 41, 4109-4112.	13.8	13
57	Synthesis, characterization and crystal structure of new microporous bismuth silicates. Microporous and Mesoporous Materials, 2006, 97, 34-41.	4.4	13
58	An industrial perspective on the impact of Haldor Tops \tilde{A}_{s} e on research and development in catalysis by zeolites. Journal of Catalysis, 2015, 328, 11-18.	6.2	13
59	New Method for H2S Removal in Acid Solutions. ChemSusChem, 2010, 3, 829-833.	6.8	10
60	Catalytic Ring Opening of Perhydroindan – Hydrogenolytic and Cationic Reaction Paths. Chinese Journal of Catalysis, 2012, 33, 70-84.	14.0	10
61	Crystalline Microporous Organosilicates with Reversed Functionalities of Organic and Inorganic Components for Room-Temperature Gas Sensing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24812-24820.	8.0	9
62	The role of boric acid in the synthesis of Eni Carbon Silicates. Dalton Transactions, 2014, 43, 10617.	3.3	8
63	Disordered Pentasil-Type Borosilicates. ACS Symposium Series, 1989, , 360-373.	0.5	7
64	Silica-aluminas: sol-gel synthesis and characterization. Studies in Surface Science and Catalysis, 2001, , 401-411.	1.5	7
65	Background and Recent Advances in Ti-Containing Zeolite Materials. Structure and Bonding, 2017, , $1\text{-}52$.	1.0	7
66	25-O-03 - Selective alkylation of naphthalene to 2,6-dimethylnaphthalene catalyzed by MTW zeolite. Studies in Surface Science and Catalysis, 2001, , 152.	1.5	6
67	Synthesis, characterization and crystal structure of EMS-2 – a novel microporous stannosilicate. Microporous and Mesoporous Materials, 2007, 101, 43-49.	4.4	6
68	Synthesis and characterization of Si/Ga Eni Carbon Silicates. Chinese Journal of Catalysis, 2015, 36, 813-819.	14.0	6
69	Acidity Generation of Binary Metal Oxide Catalysts. Studies in Surface Science and Catalysis, 1993, 75, 2047-2050.	1.5	5
70	Influence of zeolite pore structure on benzene propylation to iso-/n-propylbenzene. Studies in Surface Science and Catalysis, 2004, 154, 2239-2246.	1.5	5
71	Synthesis and framework topology of the new disordered ERS-10 zeolite. Journal of Porous Materials, 2007, 14, 315-323.	2.6	5
72	Synthesis and characterization of ERS-10 zeolite: Towards a material with hierarchical porosity. Applied Catalysis A: General, 2015, 504, 171-178.	4.3	5

#	Article	IF	CITATIONS
73	Investigation on the hydrated and dehydrated forms of the ion-exchanged microporous stannosilicate EMS-2. Microporous and Mesoporous Materials, 2009, 117, 414-422.	4.4	4
74	The Turning Point of the Refining Industry in Europe. Chemie-Ingenieur-Technik, 2014, 86, 2150-2159.	0.8	4
75	EMS-6, a novel microporous gadoliniumsilicate with monteregianite structure: Synthesis, crystal structure and thermal behavior. Microporous and Mesoporous Materials, 2010, 134, 115-123.	4.4	3
76	STUDY ON THE INSERTION OF VANADIUM IN THE SILICALITE FRAMEWORK. , 1993, , 207-214.		3
77	Structural characterization of borosilicates synthesized in the presence of ethylenediamine. Studies in Surface Science and Catalysis, 2002, 142, 1923-1930.	1.5	2
78	On the crystal structure solution and characterization of ECS-2, a novel microporous hybrid organic-inorganic material. Studies in Surface Science and Catalysis, 2008, 174, 965-968.	1.5	2
79	The influence of reactor fluid-dynamics during zeolite synthesis: The synthesis and the cracking activity of hierarchical ERS-10 A zeolite. Journal of Catalysis, 2015, 329, 307-316.	6.2	2
80	Isomorphous Substitution in Zeolite Catalysts. Studies in Surface Science and Catalysis, 1989, 44, 237-238.	1.5	1
81	Synthesis, characterization and adsorption capacities of microporous titanosilicate EMS-3. Microporous and Mesoporous Materials, 2006, 90, 153-161.	4.4	1
82	Eni Carbon Silicates: Innovative Hybrid Materials for Room-Temperature Gas Sensing. Proceedings (mdpi), 2017, 1, 322.	0.2	0