Georg E Winter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/768619/publications.pdf

Version: 2024-02-01

43 papers 6,117 citations

30 h-index 265206 42 g-index

46 all docs

46 docs citations

times ranked

46

8507 citing authors

#	Article	IF	CITATIONS
1	Target 2035 – update on the quest for a probe for every protein. RSC Medicinal Chemistry, 2022, 13, 13-21.	3.9	39
2	Degrading boundaries to break new ground in chemical biology. Current Research in Chemical Biology, 2022, 2, 100033.	2.9	1
3	<scp>BRD4</scp> degradation blocks expression of <scp>MYC</scp> and multiple forms of stem cell resistance in Ph ⁺ chronic myeloid leukemia. American Journal of Hematology, 2022, 97, 1215-1225.	4.1	14
4	Acute BAF perturbation causes immediate changes in chromatin accessibility. Nature Genetics, 2021, 53, 269-278.	21.4	103
5	Fast-acting chemical tools to delineate causality in transcriptional control. Molecular Cell, 2021, 81, 1617-1630.	9.7	44
6	The 2 nd Alpine Winter Conference on Medicinal and Synthetic Chemistry. ChemMedChem, 2021, 16, 2417-2423.	3 . 2	0
7	The role of reversible and irreversible covalent chemistry in targeted protein degradation. Cell Chemical Biology, 2021, 28, 952-968.	5. 2	51
8	Identification and selectivity profiling of small-molecule degraders via multi-omics approaches. Cell Chemical Biology, 2021, 28, 1048-1060.	5 . 2	34
9	Two distinct mechanisms of RNA polymerase II elongation stimulation inÂvivo. Molecular Cell, 2021, 81, 3096-3109.e8.	9.7	53
10	Targeted protein degradation: current and future challenges. Current Opinion in Chemical Biology, 2020, 56, 35-41.	6.1	74
11	Rational discovery of molecular glue degraders via scalable chemical profiling. Nature Chemical Biology, 2020, 16, 1199-1207.	8.0	197
12	Application of Relay Câ^'H Oxidation Logic to Polyhydroxylated Oleanane Triterpenoids. CheM, 2020, 6, 1183-1189.	11.7	19
13	Targeted Degradation of SLC Transporters Reveals Amenability of Multi-Pass Transmembrane Proteins to Ligand-Induced Proteolysis. Cell Chemical Biology, 2020, 27, 728-739.e9.	5.2	60
14	Selective Mediator dependence of cell-type-specifying transcription. Nature Genetics, 2020, 52, 719-727.	21.4	84
15	Expanding the Degradable Proteome: Designing PROTACs by the Book. Cell Chemical Biology, 2020, 27, 14-16.	5.2	11
16	Plasticity of the Cullin-RING Ligase Repertoire Shapes Sensitivity to Ligand-Induced Protein Degradation. Molecular Cell, 2019, 75, 849-858.e8.	9.7	80
17	MTHFD1 interaction with BRD4 links folate metabolism to transcriptional regulation. Nature Genetics, 2019, 51, 990-998.	21.4	61
18	Stick it to E3s. Nature Chemical Biology, 2019, 15, 655-656.	8.0	6

#	Article	IF	CITATIONS
19	Locus-Specific Knock-In of a Degradable Tag for Target Validation Studies. Methods in Molecular Biology, 2019, 1953, 105-119.	0.9	10
20	Homolog-Selective Degradation as a Strategy to Probe the Function of CDK6 in AML. Cell Chemical Biology, 2019, 26, 300-306.e9.	5.2	188
21	Identification and characterization of cancer vulnerabilities via targeted protein degradation. Drug Discovery Today: Technologies, 2019, 31, 81-90.	4.0	25
22	Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nature Chemical Biology, 2018, 14, 405-412.	8.0	176
23	Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma. Nature Genetics, 2018, 50, 515-523.	21.4	163
24	Translation Termination Factor GSPT1 Is a Phenotypically Relevant Off-Target of Heterobifunctional Phthalimide Degraders. ACS Chemical Biology, 2018, 13, 553-560.	3.4	128
25	Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nature Chemical Biology, 2018, 14, 163-170.	8.0	376
26	The dTAG system for immediate and target-specific protein degradation. Nature Chemical Biology, 2018, 14, 431-441.	8.0	629
27	LZTR1 is a regulator of RAS ubiquitination and signaling. Science, 2018, 362, 1171-1177.	12.6	142
28	Targetable BET proteins- and E2F1-dependent transcriptional program maintains the malignancy of glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5086-E5095.	7.1	87
29	BRD4 Degradation Is a Potent Approach to Block MYC Expression and to Overcome Multiple Forms of Stem Cell Resistance in Ph+ CML. Blood, 2018, 132, 1722-1722.	1.4	5
30	Transcription control by the ENL YEATS domain in acute leukaemia. Nature, 2017, 543, 270-274.	27.8	248
31	DCAFinating splicing. Nature Chemical Biology, 2017, 13, 575-576.	8.0	1
32	BET Bromodomain Proteins Function as Master Transcription Elongation Factors Independent of CDK9 Recruitment. Molecular Cell, 2017, 67, 5-18.e19.	9.7	347
33	MELK is not necessary for the proliferation of basal-like breast cancer cells. ELife, 2017, 6, .	6.0	86
34	The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation. Journal of Cellular Physiology, 2015, 230, 2683-2694.	4.1	58
35	Phthalimide conjugation as a strategy for in vivo target protein degradation. Science, 2015, 348, 1376-1381.	12.6	1,244
36	Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chemical Biology, 2015, 10, 1604-1609.	3.4	629

#	ARTICLE	IF	CITATION
37	The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity. Nature Chemical Biology, 2014, 10, 768-773.	8.0	157
38	Suv39h-Dependent H3K9me3 Marks Intact Retrotransposons and Silences LINE Elements in Mouse Embryonic Stem Cells. Molecular Cell, 2014, 55, 277-290.	9.7	278
39	Elucidating the molecular mechanism of action of cancer drugs in the second decade of the new millennium. Experimental Hematology, 2013, 41, S9.	0.4	0
40	Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms. Molecular Systems Biology, 2013, 9, 705.	7.2	42
41	Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML. Nature Chemical Biology, 2012, 8, 905-912.	8.0	96
42	An Integrated Chemical Biology Approach Identifies Specific Vulnerability of Ewing's Sarcoma to Combined Inhibition of Aurora Kinases A and B. Molecular Cancer Therapeutics, 2011, 10, 1846-1856.	4.1	37
43	MASPECTRAS 2: An integration and analysis platform for proteomic data. Proteomics, 2010, 10, 2719-2722.	2.2	20