Michele Dondi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/768604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving the sustainability of ceramic tile-making by mixing spray-dried and dry-granulated powders. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, 61, 325-335.	1.9	3
2	Sericite instead of feldspar in porcelain stoneware: Effect on sintering and phase evolution. International Journal of Applied Ceramic Technology, 2022, 19, 612-622.	2.1	4
3	Ceramisation of hazardous elements: Benefits and pitfalls of the inertisation through silicate ceramics. Journal of Hazardous Materials, 2022, 423, 126851.	12.4	12
4	Use of screen glass and polishing sludge in waste-based expanded aggregates for resource-saving lightweight concrete. Journal of Cleaner Production, 2022, 332, 130089.	9.3	10
5	Improving the frost resistance of roof tiles beyond current prediction schemes. Open Ceramics, 2022, 10, 100249.	2.0	1
6	Recycling of bottom ash from biomass combustion in porcelain stoneware tiles: Effects on technological properties, phase evolution and microstructure. Journal of the European Ceramic Society, 2022, 42, 5153-5163.	5.7	11
7	Powder Granulation and Compaction. , 2021, , 136-145.		1
8	Waste recycling in ceramic tiles: a technological outlook. Resources, Conservation and Recycling, 2021, 168, 105289.	10.8	59
9	Resource efficiency versus market trends in the ceramic tile industry: Effect on the supply chain in Italy and Spain. Resources, Conservation and Recycling, 2021, 168, 105271.	10.8	28
10	Effect of scale-up on the properties of PCM-impregnated tiles containing glass scraps. Case Studies in Construction Materials, 2021, 14, e00526.	1.7	3
11	Recycling mining and construction wastes as temper in clay bricks. Applied Clay Science, 2021, 209, 106152.	5.2	12
12	Effect of strong mineral fluxes on sintering of porcelain stoneware tiles. Journal of the European Ceramic Society, 2021, 41, 5755-5767.	5.7	17
13	Recycling Construction and Demolition Residues in Clay Bricks. Applied Sciences (Switzerland), 2021, 11, 8918.	2.5	6
14	Basic Guidelines for Prospecting and Technological Assessment of Clays for the Ceramic Industry, Part 1. InterCeram: International Ceramic Review, 2021, 70, 36-46.	0.2	2
15	Phase evolution during reactive sintering by viscous flow: Disclosing the inner workings in porcelain stoneware firing. Journal of the European Ceramic Society, 2020, 40, 1738-1752.	5.7	22
16	Glassy wastes as feldspar substitutes in porcelain stoneware tiles: Thermal behaviour and effect on sintering process. Materials Chemistry and Physics, 2020, 256, 123613.	4.0	10
17	Powder rheology and compaction behavior of novel micro-granulates for ceramic tiles. Powder Technology, 2020, 374, 111-120.	4.2	9
18	Ceramic pigments and dyes beyond the inkjet revolution: From technological requirements to constraints in colorant design. Ceramics International, 2020, 46, 21839-21872.	4.8	36

#	Article	IF	CITATIONS
19	Bloating mechanism in lightweight aggregates: Effect of processing variables and properties of the vitreous phase. Construction and Building Materials, 2020, 261, 119980.	7.2	15
20	Recycling of residual boron muds into ceramic tiles. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2019, 58, 199-210.	1.9	19
21	Zeolites and modified clays in environmentally sustainable building materials. , 2019, , 289-307.		2
22	Technological behavior of porcelain stoneware bodies with Egyptian syenites. International Journal of Applied Ceramic Technology, 2019, 16, 574-584.	2.1	6
23	Colour of Ca(Co Mg1-)Si2O6 pyroxenes and their technological behaviour as ceramic colorants. Ceramics International, 2018, 44, 12745-12753.	4.8	11
24	Pore evolution and compaction behaviour of spray-dried bodies for porcelain stoneware slabs. Journal of the European Ceramic Society, 2018, 38, 4127-4136.	5.7	11
25	Characteristics and rheological behaviour of spray-dried powders for porcelain stoneware slabs. Journal of the European Ceramic Society, 2018, 38, 4118-4126.	5.7	12
26	Feldspathic fluxes for ceramics: Sources, production trends and technological value. Resources, Conservation and Recycling, 2018, 133, 191-205.	10.8	42
27	Photocatalytic ceramic tiles: Challenges and technological solutions. Journal of the European Ceramic Society, 2018, 38, 1002-1017.	5.7	49
28	Predicting Viscosity and Surface Tension at High Temperature of Porcelain Stoneware Bodies: A Methodological Approach. Materials, 2018, 11, 2475.	2.9	15
29	New spectroscopic and diffraction data to solve the vanadium-doped zircon pigment conundrum. Journal of the European Ceramic Society, 2018, 38, 5234-5245.	5.7	15
30	Encapsulation of cationic iridium(iii) tetrazole complexes into a silica matrix: synthesis, characterization and optical properties. New Journal of Chemistry, 2018, 42, 9635-9644.	2.8	6
31	Self-cleaning ceramic tiles coated with Nb2O5-doped-TiO2 nanoparticles. Ceramics International, 2017, 43, 11986-11991.	4.8	41
32	Bentonites functionalized by impregnation with TiO 2 , Ag, Pd and Au nanoparticles. Applied Clay Science, 2017, 146, 1-6.	5.2	22
33	Locked octahedral tilting in orthorhombic perovskites: At the boundary of the general rule predicting phase transitions. Physical Review B, 2017, 95, .	3.2	5
34	Interaction of metakaolin-phosphoric acid and their structural evolution at high temperature. Applied Clay Science, 2017, 146, 510-516.	5.2	37
35	Cobalt chromite nano pigments synthesis through microwave-assisted polyol route. Journal of Sol-Gel Science and Technology, 2017, 83, 590-595.	2.4	6
36	Pyroplastic deformation of porcelain stoneware tiles: Wet vs. dry processing. Journal of the European Ceramic Society, 2017, 37, 333-342.	5.7	36

#	Article	IF	CITATIONS
37	Energy, environmental and technical assessment for the incorporation of EAF stainless steel slag in ceramic building materials. Journal of Cleaner Production, 2017, 142, 1778-1788.	9.3	56
38	Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis. Materials, 2016, 9, 550.	2.9	33
39	Niâ€ī Codoped Hibonite Ceramic Pigments by Combustion Synthesis: Crystal Structure and Optical Properties. Journal of the American Ceramic Society, 2016, 99, 1749-1760.	3.8	21
40	Lightweight aggregates from waste materials: Reappraisal of expansion behavior and prediction schemes for bloating. Construction and Building Materials, 2016, 127, 394-409.	7.2	111
41	Environmental life cycle assessment of lightweight concrete to support recycled materials selection for sustainable design. Construction and Building Materials, 2016, 119, 370-384.	7.2	37
42	Genesis and mining potential of kaolin deposits in Patagonia (Argentina). Applied Clay Science, 2016, 131, 44-47.	5.2	11
43	Resistance to impact of porcelain stoneware tiles. Ceramics International, 2016, 42, 5731-5736.	4.8	6
44	Ink-jet printability of aqueous ceramic inks for digital decoration of ceramic tiles. Dyes and Pigments, 2016, 127, 148-154.	3.7	36
45	TiO2 Nanosols Applied Directly on Textiles Using Different Purification Treatments. Materials, 2015, 8, 7988-7996.	2.9	36
46	Micronizing ceramic pigments for inkjet printing: Part I. Grindability and particle size distribution. Ceramics International, 2015, 41, 6498-6506.	4.8	38
47	Mineralogical composition and particle size distribution as a key to understand the technological properties of Ukrainian ball clays. Applied Clay Science, 2015, 108, 102-110.	5.2	23
48	Synthesis and color performance of CaCoSi2O6 pyroxene, a new ceramic colorant. Dyes and Pigments, 2015, 120, 118-125.	3.7	20
49	Micronizing ceramic pigments for inkjet printing: Part II. Effect on phase composition and color. Ceramics International, 2015, 41, 6507-6517.	4.8	25
50	Limited Crystallite Growth upon Isothermal Annealing of Nanocrystalline Anatase. Crystal Growth and Design, 2015, 15, 2282-2290.	3.0	17
51	Ceramic Ink-Jet Printing for Digital Decoration: Physical Constraints for Ink Design. Journal of Nanoscience and Nanotechnology, 2015, 15, 3552-3561.	0.9	25
52	Phase transitions during compression of thaumasite, Ca ₃ Si(OH) ₆ (CO ₃)(SO ₄)·12H ₂ O: A high-pressure synchrotron powder X-ray diffraction study. Mineralogical Magazine, 2014, 78, 1193-1208.	1.4	7
53	Structural relaxation around Cr3+ at the Na(Al1-xCrx)P2O7 octahedral site: an XRPD and EAS study. Zeitschrift Fur Kristallographie - Crystalline Materials, 2014, 229, .	0.8	3
54	Novel Inorganic Products Based on Industrial Wastes. Waste and Biomass Valorization, 2014, 5, 385-392.	3.4	10

#	Article	IF	CITATIONS
55	Clays and bodies for ceramic tiles: Reappraisal and technological classification. Applied Clay Science, 2014, 96, 91-109.	5.2	192
56	TiO2 based nano-photocatalysis immobilized on cellulose substrates. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 276, 58-64.	3.9	61
57	Green and easily scalable microwave synthesis of noble metal nanosols (Au, Ag, Cu, Pd) usable as catalysts. New Journal of Chemistry, 2014, 38, 1401-1409.	2.8	36
58	Tetrahedrally coordinated Co2+ in oxides and silicates: Effect of local environment on optical properties. American Mineralogist, 2014, 99, 1736-1745.	1.9	35
59	Multiple approach to test nano TiO2 photo-activity. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 292, 26-33.	3.9	13
60	On the structural relaxation around Cr3+ along binary solid solutions. European Journal of Mineralogy, 2014, 26, 359-370.	1.3	7
61	Deformação Piroplástica de Porcelanatos. Cerâmica Industrial, 2014, 19, 13-17.	0.1	5
62	Composition and technological properties of geopolymers based on metakaolin and red mud. Materials & Design, 2013, 52, 648-654.	5.1	146
63	Ni-free, black ceramic pigments based on Co—Cr—Fe—Mn spinels: A reappraisal of crystal structure, colour and technological behaviour. Ceramics International, 2013, 39, 9533-9547.	4.8	54
64	Compositional and chromatic properties of strontium hexaferrite as pigment for ceramic bodies and alternative synthesis from wiredrawing sludge. Dyes and Pigments, 2013, 96, 659-664.	3.7	11
65	Next neighbors effect along the Ca–Sr–Ba-åkermanite join: Long-range vs. short-range structural features. Journal of Solid State Chemistry, 2013, 202, 134-142.	2.9	2
66	TiO2 based photocatalytic coatings: From nanostructure to functional properties. Chemical Engineering Journal, 2013, 225, 880-886.	12.7	38
67	Structural stability, cation ordering, and local relaxation along the AlNbO4-Al0.5Cr0.5NbO4 join. American Mineralogist, 2012, 97, 910-917.	1.9	11
68	Local structural relaxation around Co2+ along the hardystonite–Co-åkermanite melilite solid solution. Physics and Chemistry of Minerals, 2012, 39, 713-723.	0.8	7
69	Structural relaxation in tetrahedrally coordinated Co2+ along the gahnite-Co-aluminate spinel solid solution. American Mineralogist, 2012, 97, 1394-1401.	1.9	46
70	Appraisal of microwave-assisted ion-exchange in mordenite by crystal structure analysis. Journal of Porous Materials, 2012, 19, 361-368.	2.6	13
71	Printing nano TiO2 on large-sized building materials: Technologies, surface modifications and functional behaviour. Ceramics International, 2012, 38, 4685-4693.	4.8	21
72	Au–Ag nanoparticles as red pigment in ceramic inks for digital decoration. Dyes and Pigments, 2012, 94, 355-362.	3.7	47

#	Article	IF	CITATIONS
73	An overview of using solid wastes for pigment industry. Journal of the European Ceramic Society, 2012, 32, 753-764.	5.7	30
74	Environmental suitability of ceramic raw materials: a geochemical approach to volatile emissions and leaching potentials. Environmental Earth Sciences, 2012, 65, 517-523.	2.7	3
75	Melilite-type and melilite-related compounds: structural variations along the join Sr2â^'x Ba x MgSi2O7 (OÂâ‰ÂxÂâ‰Â2) and high-pressure behavior of the two end-members. Physics and Chemistry of Minerals, 2012, 39, 199-211.	0.8	19
76	The vitreous phase of porcelain stoneware: Composition, evolution during sintering and physical properties. Journal of Non-Crystalline Solids, 2011, 357, 3251-3260.	3.1	111
77	Co-Doped Hardystonite, Ca2(Zn,Co)Si2O7, a New Blue Ceramic Pigment. Journal of the American Ceramic Society, 2011, 94, 1025-1030.	3.8	22
78	Microwave-assisted polyol synthesis of Cu nanoparticles. Journal of Nanoparticle Research, 2011, 13, 127-138.	1.9	143
79	Temperature-resolved synchrotron X-ray diffraction of nanocrystalline titania in solvent: the effect of Cr–Sb and V–Sb doping. Journal of Nanoparticle Research, 2011, 13, 711-719.	1.9	4
80	Cr-doped perovskite and rutile pigments derived from industrial by-products. Chemical Engineering Journal, 2011, 171, 1178-1184.	12.7	11
81	Technological behaviour and recycling potential of spent foundry sands in clay bricks. Journal of Environmental Management, 2011, 92, 994-1002.	7.8	58
82	Photocatalytic, highly hydrophilic porcelain stoneware slabs. IOP Conference Series: Materials Science and Engineering, 2011, 18, 222022.	0.6	1
83	Cr-doped titanite pigment based on industrial rejects. Chemical Engineering Journal, 2010, 158, 167-172.	12.7	17
84	Phase composition of alumina–mullite–zirconia refractory materials. Journal of the European Ceramic Society, 2010, 30, 29-35.	5.7	42
85	Co-doped willemite ceramic pigments: Technological behaviour, crystal structure and optical properties. Journal of the European Ceramic Society, 2010, 30, 3319-3329.	5.7	69
86	Recycling the insoluble residue from titania slag dissolution (tionite) in clay bricks. Ceramics International, 2010, 36, 2461-2467.	4.8	27
87	The crystal structure of Sr-hardystonite, Sr2ZnSi2O7. Zeitschrift Für Kristallographie, 2010, 225, 298-301.	1.1	12
88	Vitrification of basalt orthostats and mud building components from Tilmen Höyük (south-eastern) Tj ETQqO O 488-498.	0 rgBT /0 2.4	overlock 10 3
89	Genesis of the La Espingarda kaolin deposit in Patagonia. Applied Clay Science, 2010, 47, 290-302.	5.2	11

Elastic properties of perovskite<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" 90 display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>YCrO</mml:mtext></mml:mrow><mml:mn>3.2/mml:m25</mml:m to 60 GPa. Physical Review B, 2010, 82, .

#	Article	IF	CITATIONS
91	Ti–Ca–Al-doped YCrO3 pigments: XRD and UV–vis investigation. Materials Research Bulletin, 2009, 44, 666-673.	5.2	13
92	Synthesis of Cr-doped CaTiSiO5 ceramic pigments by spray drying. Materials Research Bulletin, 2009, 44, 918-924.	5.2	15
93	Malayaite ceramic pigments: A combined optical spectroscopy and neutron/X-ray diffraction study. Materials Research Bulletin, 2009, 44, 1778-1785.	5.2	19
94	Sol–gel combustion synthesis of chromium doped yttrium aluminum perovskites. Journal of Sol-Gel Science and Technology, 2009, 50, 449-455.	2.4	30
95	Mâ€Đoped Al ₂ TiO ₅ (M=Cr, Mn, Co) Solid Solutions and their Use as Ceramic Pigments. Journal of the American Ceramic Society, 2009, 92, 1972-1980.	3.8	39
96	Recycling PC and TV waste glass in clay bricks and roof tiles. Waste Management, 2009, 29, 1945-1951.	7.4	165
97	Ni-doped hibonite (CaAl12O19): A new turquoise blue ceramic pigment. Journal of the European Ceramic Society, 2009, 29, 2671-2678.	5.7	55
98	Microwave-assisted synthesis of Pr–ZrSiO4, V–ZrSiO4 and Cr–YAlO3 ceramic pigments. Journal of the European Ceramic Society, 2009, 29, 2951-2957.	5.7	29
99	Durability of clay roofing tiles: the influence of microstructural and compositional variables. Journal of the European Ceramic Society, 2009, 29, 3121-3128.	5.7	25
100	The thermal transformation of Man Made Vitreous Fibers (MMVF) and safe recycling as secondary raw materials (SRM). Journal of Hazardous Materials, 2009, 162, 1494-1506.	12.4	26
101	Ceramic pigments with sphene structure obtained by both spray- and freeze-drying techniques. Powder Technology, 2009, 193, 1-5.	4.2	23
102	Process of pyroplastic shaping for special-purpose porcelain stoneware tiles. Ceramics International, 2009, 35, 1975-1984.	4.8	25
103	Predicting the initial rate of water absorption in clay bricks. Construction and Building Materials, 2009, 23, 2623-2630.	7.2	80
104	Colour performance of ceramic nano-pigments. Dyes and Pigments, 2009, 80, 226-232.	3.7	181
105	Structural Concretes with Waste-Based Lightweight Aggregates: From Landfill to Engineered Materials. Environmental Science & Technology, 2009, 43, 7123-7129.	10.0	30
106	Structural Relaxation around Cr ³⁺ in YAlO ₃ â^'YCrO ₃ Perovskites from Electron Absorption Spectra. Journal of Physical Chemistry A, 2009, 113, 13772-13778.	2.5	32
107	Heterocoagulation-spray drying process for the inclusion of ceramic pigments. Journal of the European Ceramic Society, 2008, 28, 169-176.	5.7	10
108	Gray–blue Al2O3–MoOx ceramic pigments: Crystal structure, colouring mechanism and performance. Dyes and Pigments, 2008, 76, 179-186.	3.7	24

#	Article	IF	CITATIONS
109	Titania slag as a ceramic pigment. Dyes and Pigments, 2008, 77, 608-613.	3.7	15
110	Malayaite ceramic pigments prepared with galvanic sludge. Dyes and Pigments, 2008, 78, 157-164.	3.7	41
111	Glass–ceramic frits for porcelain stoneware bodies: Effects on sintering, phase composition and technological properties. Ceramics International, 2008, 34, 455-465.	4.8	43
112	The effect of kaolin properties on their behaviour in ceramic processing as illustrated by a range of kaolins from the Santa Cruz and Chubut Provinces, Patagonia (Argentina). Applied Clay Science, 2008, 40, 143-158.	5.2	32
113	The geology and mineralogy of a range of kaolins from the Santa Cruz and Chubut Provinces, Patagonia (Argentina). Applied Clay Science, 2008, 40, 124-142.	5.2	25
114	Use of zeolite-rich rocks and waste materials for the production of structural lightweight concretes. Applied Clay Science, 2008, 41, 61-72.	5.2	64
115	Nano-Sized Ceramic Inks for Drop-on-Demand Ink-Jet Printing in Quadrichromy. Journal of Nanoscience and Nanotechnology, 2008, 8, 1979-1988.	0.9	46
116	Campanian Ignimbrite as raw material for lightweight aggregates. Applied Clay Science, 2007, 37, 115-126.	5.2	51
117	Effect of waste glass (TV/PC cathodic tube and screen) on technological properties and sintering behaviour of porcelain stoneware tiles. Ceramics International, 2007, 33, 615-623.	4.8	74
118	Crystal structural and optical properties of Cr-doped Y2Ti2O7 and Y2Sn2O7 pyrochlores. Acta Materialia, 2007, 55, 2229-2238.	7.9	109
119	Zeolite–feldspar epiclastic rocks as flux in ceramic tile manufacturing. Microporous and Mesoporous Materials, 2007, 105, 273-278.	4.4	37
120	Crystal structure, optical properties and colouring performance of karrooite MgTi2O5 ceramic pigments. Journal of Solid State Chemistry, 2007, 180, 3196-3210.	2.9	56
121	High-performance yellow ceramic pigments Zr(Ti1â^'xâ^'ySnxâ^'yVyMy)O4 (M=Al, In, Y): Crystal structure, colouring mechanism and technological properties. Materials Research Bulletin, 2007, 42, 64-76.	5.2	12
122	Pseudobrookite ceramic pigments: Crystal structural, optical and technological properties. Solid State Sciences, 2007, 9, 362-369.	3.2	65
123	Ceramic application of mica titania pearlescent pigments. Dyes and Pigments, 2007, 74, 1-8.	3.7	66
124	Equilibrium moisture content of clay bricks: The influence of the porous structure. Building and Environment, 2007, 42, 926-932.	6.9	26
125	The role of counterions (Mo, Nb, Sb, W) in Cr-, Mn-, Ni- and V-doped rutile ceramic pigments. Ceramics International, 2006, 32, 393-405.	4.8	69
126	The role of counterions (Mo, Nb, Sb, W) in Cr-, Mn-, Ni- and V-doped rutile ceramic pigments. Ceramics International, 2006, 32, 385-392.	4.8	67

#	Article	IF	CITATIONS
127	Zirconium titanate ceramic pigments: Crystal structure, optical spectroscopy and technological properties. Journal of Solid State Chemistry, 2006, 179, 233-246.	2.9	58
128	Colour development of red perovskite pigment Y(Al, Cr)O3in various ceramic applications. Advances in Applied Ceramics, 2006, 105, 99-106.	1.1	33
129	The role of surface microstructure on the resistance to stains of porcelain stoneware tiles. Journal of the European Ceramic Society, 2005, 25, 357-365.	5.7	61
130	Structural variations of Cr-doped (Y,REE)AlO3 perovskites. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, 930-937.	0.8	14
131	Technological characterization and ceramic application of gravel pit by-products from middle-course Jarama river deposits (central Spain). Applied Clay Science, 2005, 28, 283-295.	5.2	25
132	Neapolitan Yellow Tuff as raw material for lightweight aggregates in lightweight structural concrete production. Applied Clay Science, 2005, 28, 309-319.	5.2	65
133	Clayey materials from the Sierra de la Demanda Range (Spain): their potential as raw materials for the building ceramics industry. Clay Minerals, 2005, 40, 25-41.	0.6	12
134	Thermal Conductivity of Clay Bricks. Journal of Materials in Civil Engineering, 2004, 16, 8-14.	2.9	93
135	The influence of microstructure on the performance of white porcelain stoneware. Ceramics International, 2004, 30, 953-963.	4.8	82
136	Zeolitic tuffs as raw materials for lightweight aggregates. Applied Clay Science, 2004, 25, 71-81.	5.2	114
137	Water vapour permeability of clay bricks. Construction and Building Materials, 2003, 17, 253-258.	7.2	40
138	Influence of zeolites on the sintering and technological properties of porcelain stoneware tiles. Journal of the European Ceramic Society, 2003, 23, 2237-2245.	5.7	68
139	The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic–chloritic clays. Applied Clay Science, 2002, 20, 301-306.	5.2	116
140	Orimulsion fly ash in clay bricks—part 1. Journal of the European Ceramic Society, 2002, 22, 1729-1735.	5.7	42
141	Orimulsion fly ash in clay bricks—part 2: technological behaviour of clay/ash mixtures. Journal of the European Ceramic Society, 2002, 22, 1737-1747.	5.7	43
142	Orimulsion fly ash in clay bricks—part 3. Journal of the European Ceramic Society, 2002, 22, 1749-1758.	5.7	28
143	Effect of soda-lime glass on sintering and technological properties of porcelain stoneware tiles. Ceramics International, 2002, 28, 873-880.	4.8	146
144	Chemical, mineralogical and ceramic properties of kaolinitic materials from the Tresnuraghes mining district (Western Sardinia, Italy). Applied Clay Science, 2001, 18, 145-155.	5.2	39

#	Article	IF	CITATIONS
145	Clay materials for ceramic tiles from the Sassuolo District (Northern Apennines, Italy). Geology, composition and technological properties. Applied Clay Science, 1999, 15, 337-366.	5.2	63
146	Chemical Composition of Melilite Formed during the Firing of Carbonateâ€Rich and Ironâ€Containing Ceramic Bodies. Journal of the American Ceramic Society, 1999, 82, 465-468.	3.8	25
147	Use of zirconium oxychloride to neutralize HF in the microwave-assisted acid dissolution of ceramic glazes for their chemical analysis by ICP-OES. Talanta, 1998, 45, 1201-1210.	5.5	5
148	Kaolinitic materials from Romana (north-west Sardinia, Italy) and their ceramic properties. Applied Clay Science, 1997, 12, 145-163.	5.2	30
149	Composition and ceramic properties of tertiary clays from southern Sardinia (Italy). Applied Clay Science, 1997, 12, 247-266.	5.2	76
150	Expanded clays in water treatment: some alternative filtration media. Rendiconti Online Societa Geologica Italiana, 0, 39, 159-162.	0.3	0